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Abstract

The internal representations of three dimensional objects
within visual memory are only partially understood. Previous
research suggests that 3D object perception is viewpoint de-
pendent, and that the visual system stores viewpoint perspec-
tives in a biased manner. The aim of this project was to ob-
tain detailed estimates of the distributions of 3D object views
in shared human memory. We devised a novel experimental
paradigm based on transmission chains to investigate memory
biases for the 3D orientation of objects. We found that memory
tends to be biased towards orthogonal diagrammatic perspec-
tives aligned with the ends of the standard basis for a set of
common 3D objects, and that these biases are strongest for side
views as well as top or bottom views for a small set of bilater-
ally symmetric objects. Finally, we found that views sampled
from the modes were easier to categorize in a recognition task.
Keywords: Memory; 3D object perception; Serial reproduc-
tion; Iterated learning; Vision.

Introduction
Humans do not possess photographic memories of the things
they see. Instead, visual memory is known to be biased to-
wards systematic and simplified representations. The per-
ception of 3D objects is known to be viewpoint dependent,
but detailed estimates of the distributions of 3D object views
in shared human memory remain unknown. For a given ob-
ject, towards what views does visual memory tend to be bi-
ased? Are the number of views the same across different ob-
jects? How many views are there? Evidence from prior work
points to systematic viewpoint-specific biases in 3D object
perception such as so-called “canonical” views of common
everyday objects (Palmer & Rosch, 1981). Canonical views
are associated with improvements in categorization accuracy
and recognition (as measured using response-time latencies).
While the human visual system is largely robust to perspec-
tive transformations, this work provided early evidence for
viewpoint dependence in human object perception, a finding
that was corroborated in subsequent work (Bülthoff et al.,
1995). However, none of this work fully characterized the
object-specific distributions of views that bias visual memory,

and provided mostly indirect evidence for them. We therefore
attempt to provide a detailed picture of the structure of mem-
ory biases for the orientation of 3D objects.

We aimed to uncover the distributions of 3D object views
in shared human memory. Doing so is of particular inter-
est to disambiguate theoretical explanations for viewpoint de-
pendence in 3D object perception, and to determine if bi-
ases in remembered views of objects correspond to canoni-
cal views. Two theoretical explanations have been suggested
in order to explain canonical views: the “frequency hypothe-
sis” and the “maximal information hypothesis” (Mezuman &
Weiss, 2012). The “frequency hypothesis” states that privi-
leged views correspond to the views that are most commonly
taken when viewing or interacting with everyday objects,
while the “maximal information hypothesis” states that these
views change the least under small local perspective transfor-
mations. The “frequency hypothesis” is most consistent with
the notion of a statistical “prior” in Bayesian accounts of per-
ception and memory. However, it remains an open question
as to whether memory representations for 3D objects resem-
ble canonical views, and if these representations are shaped
by statistical priors.

To answer this question, we used transmission chains
adapted to a 3D orientation memory experiment. Under ex-
perimentally verifiable conditions, transmission chains are
known to approximate samples from shared priors (Xu &
Griffiths, 2010), and can be used to characterize shared biases
in reconstructive memory. In this paper, we start by outlining
past computational approaches and empirical findings regard-
ing 3D object representations, as well as theoretical proper-
ties of transmission chains. Next, we present our novel find-
ings revealing hitherto unknown distributions of 3D memory
biases for a range of everyday objects. We find that these
distributions are characterized by systematic patterns of bi-
ases towards diagrammatic orthogonal views that appear to
be aligned with the faces of the objects (strong side views,



front and back views, top and bottom views). These views do
not appear to match known canonical views, which are typ-
ically semi-profile views, although they are consistent with
past findings that revealed similar biases in visual inspection
of novel objects in adults (Perrett et al., 1992), as well as in-
fants (Pereira et al., 2010). We also find that these views were
associated with improved categorization accuracy relative to
views sampled from areas far from the modes in these distri-
butions.

Background
Transmission chains and experimental methods Trans-
mission chains are analogous to the so-called “telephone
game.” In the most famous and early example, Bartlett had
a series of people reproduce a drawing of an owl hieroglyph,
and as the the reproductions of the image progressed through
the chain, what began as an imperfect but recognizable fac-
simile of the hieroglyph morphed into an image of a cat
(Bartlett, 1932), revealing that the participants shared a com-
mon bias to distort the unusual image into an image for which
they had a strong collective prior.

Transmission chains have since been adopted to study phe-
nomena in many fields, including evolutionary biology, cog-
nitive science, anthropology, vision science, and music cogni-
tion (Kirby et al., 2008; Jacoby & McDermott, 2017; Lew &
Vul, 2015). A recent analysis of reconstruction from memory
examined how information should change as it is transmitted
through a chain of rational agents (Xu & Griffiths, 2010). Un-
der the rational analysis, reconstruction from memory is de-
fined as the problem of inferring the most accurate state of the
world despite a noisy or imperfect sensory input (such as an
imperfect memory trace of a scene or an object in the world).
Using the framework of Bayesian statistics, this problem can
be captured as follows: Previous experience is characterized
by a prior distribution over possible world states (a hypothe-
sis space of all conceivable world states, such as all possible
3D orientations of an object). The posterior is computed by
integrating that prior with the likelihood, which in this case
simply describes the probability of observing a world state
(such as an object in a particular orientation), given a hypoth-
esis about the true state of the world. In this work, (Xu &
Griffiths, 2010) found that a transmission chain populated by
rational Bayesian agents defines a Markov chain with the fol-
lowing transition probabilities:

p(xn+1 | xn) =
∫

p(xn+1 | µ)p(µ | xn)dµ,

where x is a noisy stimulus (such as noisy recollection of the
orientation of a previously viewed object) and µ is the true
state of the world that generated that stimulus. This Markov
chain captures the probability of a new stimulus xn+1 being
created as a reconstruction of a previously seen stimulus xn
in each iteration in the transmission chain, and has a station-
ary distribution which defines the probability of observing a
stimulus x when µ is sampled from the prior:

p(x) =
∫

p(x | µ)p(µ)dµ.

This process approximates a Gibbs sampler for the joint dis-
tribution on x and µ defined by multiplying p(x | µ) and p(µ).
In other words, assuming that participants share common in-
ductive biases, the transmission chain will converge to a sam-
ple from their shared prior.

Computational theories of 3D representations To date,
a significant body of work has explored the nature of human
representations of 3D objects and a great deal of experimental
work has been done to elucidate the characteristics of human
perceptual representations of 3D objects and scenes. (Palmer
& Rosch, 1981) provided early evidence for the existence of
privileged “canonical” views that facilitate 3D object recog-
nition, in keeping with principles of categorization (Rosch,
1999) that introduced the notion of “prototype exemplars.”
Later work introduced the recognition-by-components (RBC)
theory of image understanding (Biederman, 1987). This work
proposed that representations of objects in memory are ac-
cessed when components (“geons”) derived from perceptual
mechanisms (Lowe, 2012; Rock, 1983) are combined, and
that these components form a perceptual basis for a “com-
ponential representation of real world objects in memory.” A
third computational theory argues that objects are represented
as lists of viewpoint-invariant properties (A piano has keys,
pedals, legs) (Bülthoff et al., 1995; B. Tversky & Hemen-
way, 1984; A. Tversky, 1977), or by points in abstract multi-
dimensional feature spaces (Carr et al., 2001; ?; Su et al.,
2015).

Theories based on list-based feature descriptors or
viewpoint-invariant parts have been difficult to reconcile with
experimental data showing systematic view-specific varia-
tions in human response-time latencies and recognition ac-
curacy (Bülthoff et al., 1995; Tarr et al., 1998). These results
have tended to favor theories that postulate viewpoint-specific
and largely 2D representations (Vetter et al., 1995; Bülthoff et
al., 1995) as forming the basis for human object representa-
tions. However, to our knowledge, little work has been done
to devise an experimental method for revealing the distribu-
tions of viewpoint-specific biases in memory representations.

Canonical perspectives were discovered for objects that
were bilaterally symmetric due to experimental constraints,
and although (Palmer & Rosch, 1981) confirmed the presence
of privileged views for each, it is possible that other canoni-
cal views, such as the mirror images of bilaterally symmetric
objects exist. In fact, work using online images returned by
search engines estimated the modes of the distribution of 3D
perspectives for a variety of objects, and found that canonical
views for bilaterally symmetric objects are typically bi-modal
(Mezuman & Weiss, 2012). In this paper we adapted trans-
mission chains to a memory paradigm in which we probed
collective biases in reconstructive memory for the 3D orien-
tation of a handful of everyday objects in order to uncover
any and all biases in 3D reconstructive memory.



Methods
Participants
All participants were recruited online using Amazon Mechan-
ical Turk and gave informed consent. according to a protocol
was approved by The Committee for the Protection of Human
Subjects (CPHS) at the University of California, Berkeley.
Each experiment required approximately 100 participants.

Stimuli
The stimuli used in these experiments were 3D objects that
could be viewed from any angle by rotating a camera oriented
towards the origin of the object, and at a fixed distance (travel-
ling on the surface of a sphere around the object) and with the
camera tilted (in a direction tangent to the sphere). We started
with a detailed mesh model of a typical teapot, and shoe. In
addition, we used grayscale versions of the teapot and shoe,
as well as a grayscale 3D model of a car, alarm clock, arm-
chair, coffee maker, camera, and grand piano, see Figure 1A.
We selected objects matching the objects in (Palmer & Rosch,
1981) as closely as possible.

Procedure
For each object, we ran a serial reproduction experiment with
250 chains and 20 iterations (see Figure 1B). Participants
viewed timed displays of the 3D object. The chains were ini-
tialized as camera views over the surface of a unit sphere with
the object in the center. The camera frame orientation was al-
ways oriented towards the center of the object, but was tilted
at random angles orthogonal to the sphere (the “up” vector,
see Figure 1D). The position of the camera and the view were
sampled uniformly from the Haar measure on SO(3) (Perez-
Sala et al., 2013). Following the timed display, and 1000 ms
retention phase when the screen went blank, a probe screen
containing the object at a new random orientation was shown.

Participants were instructed to orient the object (which is
equivalent to rotating the camera view) so that it matched the
original orientation of the object that was shown during the
initial timed display. Participants were not given time con-
straints during the probe, and could change their responses as
many times as they needed. The object on the screen could
be rotated by means of the mouse, as well as a set of buttons
(see Figure 1C). Participants were given 10 practice trials dur-
ing which the initial display was shown for 4000 ms in order
to familiarize them with the nature of the task, and the user
interface. Only after they completed the practice trials was
the presentation time reduced to 1000 ms. In addition, they
were given trial-by-trial feedback based on their performance
(either a green message saying “Well done! Your response
was sufficiently accurate”, or a red message stating: “Your
response was insufficiently accurate”), see Figure 1C.

Results
By the final iteration of the transmission chain process, a clear
pattern emerges: 3D views are biased towards a small set of
orthogonal “diagramatic” views that are aligned with the top,

Figure 1: 3D objects, experiment structure, task and geome-
try. A. Textured and grayscale 3D objects used in the trans-
mission chain experiments. B. Transmission chain structure:
A 3D view of an object (teapot) is initialized somewhere at
random over a unit sphere. This view is presented as a stimu-
lus to a subject who then reconstructs this view from memory.
The subject’s response is then presented as the stimulus to a
second subject, who must reproduce this second view, and so
on. C. The experiment instructions and trial structure. Par-
ticipants could rotate the object with the mouse and a set of
buttons displayed over the image. They were instructed to
reproduce the view they saw as accurately as possible, and
were given feedback on their performance. D. Geometry of
3D object views adopted in the experiment. Views (cameras)
were always positioned on the surface of a sphere centered at
the object, and was always pointed towards the center of the
sphere (towards the object). The local frame of the camera
could vary according to the “up” vector, which controls the
tilt of the camera



bottom, and side views of the objects. In some cases, the
views in the modes correspond to the front and back (for the
clock in particular), see Figure 2 for the results obtained with
the textured teapot and shoe. While all the starting views
of the chains are camera views sampled uniformally over
the sphere surrounding the objects, the distributions quickly
change and become clustered around four distinct modes as
the chains progress. Figure 2A shows the initial distribution,
the distribution at the 5th, 10th, 15th and 20th iteration of the
transmission chains for the teapot and shoe.

Figure 2B shows the distributions of all points across all
iterations for the shoe and teapot. In addition, the four modes
with respect to the camera directions are plotted in four colors
for both distributions. Next to each of these distributions, we
show the corresponding histograms of the angles of the “up”
vectors at the modes, where the direction most aligned with
the data is centered to 90 degrees for the first two modes of
the teapot and shoe. Surprisingly, while the “up” vectors in
modes I, II (side views) of the Teapot are centered mainly in
one direction, those in modes III and IV (the top and bottom
views) show a bimodal distribution (top and bottom views
are remembered with the handle and spout oriented vertically,
while the side views show them to be oriented horizontally,
orthogonal to the vertical orientations in the top and bottom
views). We don’t find this pattern in the case of the shoe,
where the distributions of “up” vector angles were unimodal
for all modes (I, II, III, and IV). This suggests that memory
representations contain interaction patterns where some ob-
jects are memorized with a specific location and orientation,
while memory for views of other objects are not necessarily
associated with particular angular orientations. The columns
on the far right of Figure 2B show spherical kernel density
estimates (KDEs) of the final iteration data oriented accord-
ing to the top four modes. Thumbnail insets to the right of the
KDE modes show the corresponding object views. For both
objects, the top two views are side views, while the remaining
two modes correspond to the top and bottom views.

In order to verify if our chains showed convergence, we
measured the mean copying error of the camera views for the
textured teapot and shoe objects (See Figure 2C). The copy-
ing error was computed separately for each iteration by av-
eraging the difference between the remembered camera view
responses and stimulus views. We found that the copying er-
ror tends to reduce over the course of the experiment. Indeed,
whereas the copying error for the first iterations was signif-
icantly smaller compared with the last iteration (t(364)=6.6,
p<0.001 and t(386)=5.6, p<0.001 for the teapot and shoe, re-
spectively), the difference between the copying error in the
last iteration was not significantly different from the preced-
ing four iterations (p > 0.1). For all cases this holds true even
with Bonferroni corrections for multiple comparisons). This
suggests that convergence occurs by the last five iterations of
the chains.

In order to control for effects of colors and texture on 3D
memory biases, as well as to control these factors for the

Figure 2: Transmission chain results for a teapot and shoe.
A. Scatter plots showing camera views and “up” vectors for
four chain iterations, and the initial uniform random seed lo-
cations. First row shows results for the teapot (initial seed,
5th, 10th, 15th, and 20th iteration distributions), and second
row shows results for the shoe. B. Modes in the 20th and final
distributions of views for the teapot and shoe. Four modes are
clearly discernible: the side views of the objects, and the top
and bottom views. Spherical subplots show a superposition
of camera views across all iterations, highlighted are the four
modes obtained by the 20th and final iteration of the chains.
These correspond to the side views as well as the top and
bottom views. The central subplots show histograms of the
“up” vector angles, which show the frequency of local cam-
era orientations at each of the modes. They reveal that per-
spectives in the first two modes (side views in both cases) are
biased towards views where the camera is oriented towards
a 90 degree angle, which yields views of the objects that are
upright. These views are visualized in the far right columns,
for each object, along with views of the modes in spherical
Kernel Density Estimates (KDEs) of the 20th iteration data.
C. Copying error across the chain iterations.



recognition experiments that follow, we ran a set of grayscale
objects. Figure 3A the data for the novel objects. The results
for the teapot and shoe were largely consistent with the results
obtained with the textured versions of these objects, although
only three clear modes were observed for the grayscale shoe
(side views, and top view). Similarly, the modes for the car
reveal four orthogonal views: left and right sides, as well
as top, and bottom views. For the remaining objects, either
three or two modes were present. Only two primary modes
revealing frontal views, and back views were observed for
the clock. Finally, the results for the remaining objects reveal
primarily three orthogonal views. In sum, we find that 3D
object memory representations are not equivalent to canoni-
cal views, and are characterized by multi-modal biases that
may reflect the symmetry of the objects, a finding that cor-
roborates findings revealing the presence of bi-modal views
in distributions of online images (Mezuman & Weiss, 2012),
although those were not views aligned with the faces of the
objects, nor were they necessarily orthogonal. The memory
representations we uncovered replicate past findings showing
systematic biases towards the same views in a variety of vi-
sual inspection tasks in both infants and adults, suggesting
that memory biases may be influenced by encoding precision
and angular discrimination.

Figure 3 shows the results of a categorization experiment in
which we compared the categorization accuracy for the set of
eight grayscale objects when they were presented from views
sampled in the modes of our memory KDEs, or from views
far from the modes (sampling 4 nearest neighbors around the
points that were farthest from the modes on the sphere, in
the initial seed distributions of the chains). Figure 3B shows
example views, and the experimental task: subjects were pre-
sented with a view for 100 ms, and then asked to categorize
the object. The eight object labels were shown, as well as two
additional labels (“house”, “horse”). Figure 3B shows recog-
nition d’ results as a function of view type. We found that
views of the shoe, clock, car, teapot, and coffee machine were
recognized more accurately when they were sampled from the
modes in our KDEs (p < 0.001 in all cases, following a Bon-
ferroni correction for multiple comparisons). Overall, views
sampled from the modes were associated with improved clas-
sification accuracy (p < 0.0001).

Discussion

We found the use of transmission chains to be particularly
sensitive to characterizing shared 3D memory biases. The
biases we observed for a small set of bilaterally symmet-
ric everyday objects are highly systematic and not identical
to known canonical views. They are strongly diagrammatic
views of the sides, top and bottom, or front and back faces of
the objects. In this respect, they resemble the bimodal char-
acteristics of the distributions of online images estimated by
(Mezuman & Weiss, 2012), although the diagrammatic as-
pects of these views are more reminiscent of well-known bi-
ases in visual inspection of 3D objects Perrett et al. (1992);

Figure 3: Recognition experiments. A. Memory biases
for global camera views and local camera orientations for
grayscale objects. B. Recognition experiment task design and
view examples. For each object, participants were presented
with a view sampled either from one of the perspective modes
obtained from the final chain iteration, or from a point far-
thest from one of the final modes sampled from the uniform
seed distribution, for 100 ms. They were then asked to se-
lect the correct object name from a list of possibilities. C.
Recognition d′ results for each of the objects, and for all the
objects. Results show that in most cases, participants were
more likely to select the correct object label when the view
shown was sampled from one of the modal views sampled
form the final chain iteration. Error bars correspond to 1000
bootstrapped samples of the data, with replacement. We used
the Bonferroni correction for multiple comparisons.



Pereira et al. (2010). However, we did observe differences
between objects, with some object representations containing
four distinct modes, and others containing fewer (the clock).
In addition to finding clear biases in camera locations, we also
observed that camera views tended to be consistently oriented
upright for the side views, but not for top or bottom views. Fi-
nally, we determined that categorization accuracy was higher
for views that were sampled from the modes of the distribu-
tions we estimated, when compared to views sampled from
regions that were farthest from the modes. This suggests that
2D memory representations of 3D objects are informative for
recognition.

Finally, using this tool to uncover memory priors for ob-
jects that are not bilaterally symmetric, and with different ge-
ometries could help determine what factors are responsible
for shaping biases in 3D memory representations. Our current
findings do not appear to be altogether consistent with statis-
tical priors (the “frequency hypothesis”), since diagrammatic
views (especially of the bottom of objects like cars, teapots,
and pianos) are not views of these objects that are typically
experienced. However, they may be due to variable angu-
lar discrimination accuracy, which may be increased for sides
that are aligned with the first principal component axes of the
objects, and decreased for the shorter sides. Our approach
provides a powerful tool for estimating detailed distributions
of biases in 3D memory, and can provide an empirical basis
for spurring novel theoretical insights on the nature of these
representations.
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