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Abstract. Visual memory holds in mind details of objects, textures, faces, and scenes. After initial 
exposure to an image, however, visual memories rapidly degrade because they are transferred from 
iconic memory, a high-capacity sensory buffer, to working memory, a low-capacity maintenance 
system. Here, we extend the classic depiction of visual memory maintenance to include competitive 
interactions between memories and a stability threshold that determines the weakest maintainable 
memory. The proposed model, based on these principles, can be understood as an evolutionary 
process with memories competing over a limited memory-supporting commodity. The model 
reproduces the time course of visual working memory observed through experiment. Notable features 
of this time course include load-dependent stability and overreaching, in which the act of trying to 
remember more information causes people to forget faster, and to remember less, respectively. Our 
results demonstrate that evolutionary models provide quantitative insights into the mechanisms of 
memory maintenance. 
 

Memories degrade and are eventually forgotten. From its inception, research on memory degradation 

has characterized ‘forgetting functions’ that track the downfall of how much is remembered over 

time1,2. A forgetting function is shaped by the processes that degrade and maintain memories, and its 

functional form is a signature of the underlying mechanisms3. Examining forgetting functions can 

thus reveal important insights, having previously provided some of the primary evidence for iconic 

memory4 and for rational theories of adaptive forgetting5,6. 

 In the case of visual memory, which holds in mind the details of what was seen, at least three 

subsystems contribute to storage and maintenance. Each subsystem has a characteristic timescale, 

format, and neural substrate. Iconic memory, a high-capacity sensory buffer, operates over short time 

scales (0.05–1 s) and is thought to result from persistence of activation in mid- to high-level visual 

areas such as the lateral occipital complex and temporal cortex4,7–8. Visual working memory, an active 

maintenance system, operates over moderate time scales (0.5–20 s) and is supported by a network that 

includes prefrontal cortex, basal ganglia, and parietal cortex9–12. Visual long term memory, a high-

capacity passive store, operates over lengthy time scales (minutes to decades) and recruits much of 

the same machinery, such as the hippocampus, that supports more general forms of long term 

memory13. Other subsystems have been proposed, each with its own particular properties and 

substrates14–16. Together, these systems maintain visual memories, allowing us to remember what we 

see. 
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 The classic forgetting function of visual memory, which is applicable to short and moderate time 

scales, has a brief period of rapid decline followed by a long plateau, a form that is attributed to the 

quick fading of iconic memory and the stability of working memory4. This model has survived for 

over 50 years with only slight modification17,18. Here, we extend the classic model to account for new 

data, leveraging the tools of evolutionary biology to model memories as entities that compete for a 

limited mental commodity that is shared among them.  

 In a series of experiments, we asked participants to remember a set of objects, and then after a 

short delay, to report the color of a randomly selected object using a graded continuous-report 

procedure. We tested a five-hundredfold range of durations (0.03–16 s) and a twelvefold range of 

loads (1–12 objects), randomly interleaving them all.  

Results 

Participants’ errors on the memory task were used to derive forgetting curves that track the number of 

remembered objects as it falls over time (Fig. 1A). Fitting an exponential function separately to the 

data from each memory load, we found that the rate of forgetting depends on the total amount of 

information held in mind, with lone memories lasting longest (estimated mean lifetime of 157 s) and 

higher loads leading to progressively shorter lifetimes (Fig. 1B–D). The relationship between memory 

load and mean lifetime is well described by a power law with exponent −1.7 (r 2  = −0.98, 

p = 6.5 × 10−8), such that halving the load leads to roughly a tripling in mean lifetime (Fig. 1B). This 

relationship was also found when limiting analysis to durations greater than 1 s, where iconic memory 

plays no role4,18 (Fig. 1C). In the initial analysis, we assumed that the forgetting function is 

exponential-like. To test whether load-dependent stability is robust to this assumption, we also 

considered another functional form—a power law. Power law forgetting has been observed in long-

term memory2 and is common because it can arise both normatively5,6 (i.e., as the optimal solution to 

a task) and as an artifact of averaging exponential-like forgetting functions that differ in timescale. 

We found a comparable effect of load-dependent stability under power law forgetting (Fig. 1D). 
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Fig. 1. Load-dependent forgetting: the more you try to remember, the faster you forget. (A) Subplots show the 
empirical forgetting function for each load (K = 1, 2, 3, 4, 6, 8, or 12 objects), tracking the number of remembered 
objects as it falls over time. The dashed black and solid grey curves assume an exponential form to the forgetting 
function; the former is fit to all the data and the latter considers only durations of at least 1 s, where iconic 
memory plays no role. The dotted red curve assumes that forgetting follows a power law. Curves were fit to the 
data from each load separately. Error bars here and in other figures are 95% credible intervals. (B) Comparing 
lifetimes across loads, the relationship is well described by a power law with exponent −1.66. (C) This 
relationship also holds for the estimates derived from durations of 1s and beyond, where iconic memory plays no 
role. (D) A similar relationship is found for degradation under power law forgetting, quantified by the scaling 
exponent, which falls precipitously with load.  

The lines of the forgetting functions for each load cross (Fig. 2A). At short durations, presenting a 

greater number of objects causes more to be remembered. At long durations, however, the opposite is 

often true: presenting a greater number of objects causes fewer to be remembered (Fig. 2B). 

Crossovers in the forgetting function imply that the relationship between the number of objects 

presented and the number remembered changes with time (Fig. 2C). The presence of crossovers 

suggests a flawed strategy of the participants, who presumably control how many objects they encode 

and maintain. Like a bodybuilder who herniates a disk by straining to lift too heavy a weight, our 

participants performed worse because they tried to encode and maintain more than they could 

handle—they overreached. A comparable effect has been reported for tracking many moving objects 

at once, which is a task that is demanding of attention19. Alternatively, it is possible that participants 
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chose appropriately when deciding how many objects to encode or maintain, but that the presence of 

distracting objects led to flawed execution of the chosen strategy. Crossovers are inconsistent with the 

classic model and its variants, whose lines occasionally meet, but never cross (see Supplementary 

Equations). 

	
Fig. 2. Crossovers in the forgetting function and mnemonic overreaching. (A) Each subplot is a pairwise 
comparison of the forgetting functions for two memory loads, with the greater load K plotted in green and the lesser 
load L in blue. Shaded error bars show 95% credible intervals at each time point. (B) The strength of evidence for a 
crossover between the forgetting functions for a pair of loads K and L is expressed as twice the natural logarithm of 
the Bayes factor B(K,L) in favor of a model with crossover over one without it 

20. In the heat map, B(K,L) is coded as 
positive (green) when the evidence favors the crossover model and as negative (blue) when it favors a model 
without crossover. (C) The crossover effect implies that the relationship between the number of objects presented 
and the number remembered will change over time. The plateau at ≈ 3 objects for short durations is considered to 
be the signature of visual working memory’s meager capacity. However, the non-monotonic curves seen for 
durations greater than 1 s are new and suggest a failure on the part of participants, who would have performed 
better by trying to encode less of the display. 

Discussion 

Construction of an evolutionary model 

To explain these results, we propose a minimal account of visual memory rooted in evolutionary 

dynamics, a mathematical framework for describing how information is reproduced in a setting that is 

subject to mutation, selection, and random drift21. Specifically, we describe an evolutionary process 

operating over a commodity that supports memory. Within this framework, units of this memory 

commodity are assigned to items, and the strength and stability of a memory depends on the number 

of quanta assigned. This commodity may take any one of a number of forms, including, for example, 

cycles of a time-based refreshing process22, distinct phases in phase-dependent coding mechanisms23, 

or populations of neurons in prefrontal cortex representing “token” encodings of visual events24. 

Regardless of its particular form, what defines a commodity is being a limited asset, at least partially 
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shared across memories, whose availability affects performance. A shared commodity stands in 

contrast to a purely local substrate that represents specific stimulus attributes in particular locations of 

the visual field25. Though such location- and content-based substrates are essential for encoding 

information into working memory, they are perhaps less relevant to memory maintenance, which may 

operate over a pluripotent medium24.  

Recent work has sought to determine both the quantization25 of the commodity and the structure 

of the memories that it forms (e.g., whether they form bound objects, bags of unbound features, or 

hierarchical bundles of features13,26–27). In the general case, the commodity is divided into N quanta, 

each of which is dedicated to some information about a mnemonic structure. Discrete “slot”-based 

models set N ≈ 4, whereas “continuous resource” models consider the limit as N tends to infinity25,28–

30. Both classes of model assume that the stability and quality of memory for an object increases as 

more of the commodity is allocated to it. 

 We model the evolution of the quantal population using a generalization of the Moran process. 

The Moran process is a model of evolution in finite populations that was originally used to describe 

the dynamics of allele frequencies31, and which has recently been leveraged to describe evolutionary 

processes in diverse settings, including frequency-dependent selection, emergence of cooperative 

behavior, and cultural evolution of language32–34. The Moran process begins with a population of 

quanta (the units of the commodity) that have been assigned to structures (which may be objects, 

features, bundles, etc.). At each time step, a quantum becomes degraded, losing the information that it 

stores. In the same step, the lost information is replaced by the contents of another quantum, 

randomly selected from them all (Fig. 3). Our generalization further introduces a stability threshold: if 

at any point a structure has fewer than s quanta assigned to it, it becomes inaccessible to the 

maintenance process and the associated quanta lose their assignment, floating freely until they are 

reassigned (Fig. 3, grey dots). This threshold is comparable to a recently proposed lower bound on the 

fidelity of an accessible memory35 and has the effect of limiting the number of structures that can be 

stored to approximately N/s. When the stability threshold is a single quantum, we can derive the 

forgetting function analytically (Supplementary Equations); for greater values of the stability 

threshold, the forgetting function is obtained numerically. Over time, the number of quanta assigned 

to a structure drifts. Eventually, either a single structure reaches fixation, with all the quanta assigned 

to it, or corruption prevails and all the quanta are left free-floating and unassigned. 

 Various cognitive processes could give rise to these dynamics. First consider a process of active 

maintenance that recycles the mnemonic commodity, repurposing quanta dedicated to lost memories 

in order to provide redundancy to those that remain. Alternatively, consider a process of interference 

where at each time step a quantum becomes corrupted, taking on the value and assignment of an 
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intruding quantum. In these ways, the evolutionary process can be seen as a formal model of memory 

maintenance in the face of degradation due to interference or decay. 

 

Fig. 3. Modeling the evolution of a mnemonic commodity. (A) In the top row, a pool of 9 unallocated quanta (grey 
dots) that wait to be assigned. In the second row, each quantum is assigned to one of three structures, labeled in 
orange, red, and purple. Subsequent rows show the processes as it plays out over time, one time step per row. 
An empty circle  denotes the quantum that died and a circle with a plus mark  denotes the quantum that was 
selected to replace it. When the number of quanta assigned to a structure drops below the threshold (s = 2 in 
panel A and s = 3 in panels B and C), the remaining quanta become inaccessible to the maintenance process 
and lose their assignment (greyed-out dots). Numbers to the right of the panel count the number of quanta 
dedicated to each structure at that time step, with superscripts showing which structure gains, +, loses, –, or 
both, ±. The number of stored structures corresponds to the number of unique colors in a row. In this run, the 
orange structure reaches fixation. (B) A second iteration of the process, with 12 quanta and 4 objects. At the last 
time step that is displayed, the blue structure is the only one left, but it has not yet reached fixation, with much of 
the commodity left unassigned. (C) A third iteration, with 15 quanta and 5 objects. Red takes an early lead, but is 
eventually overcome by green. 

 Each component of the evolutionary model — the commodity, the degradation process, and the 

stability threshold — contributes to the resulting dynamics. When a memory structure loses a 

quantum and hits the stability threshold, that structure is lost. This happens quickly at first, but more 

slowly over time, because the loss of one memory lends stability to those that remain. When there are 

many objects to remember, the mnemonic commodity is spread thinly, with fewer quanta per memory 

structure, and so each one stands closer to the stability threshold. In contrast, when there are fewer 

objects to remember, the representation of each one is more stable. This discrepancy accounts for the 
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relationship between lifetime and load and may also explain the remarkable stability of lone 

memories, which need not compete at all for the mnemonic commodity. 

Evaluating the evolutionary model 

The proposed evolutionary process reproduces the observed forgetting functions of visual memory, 

showing effects of load-dependent forgetting and mnemonic overreaching, effects that are 

inconsistent with the classic, pure death, and sudden death accounts, which show neither effect (Fig. 

4). In the classic account (Fig. 4, grey dashed lines), only iconic memory degrades; the stability of 

working memory produces flat forgetting functions with no slope and which do not cross. In the pure 

death account (Fig. 4, blue dashed lines), working memory decays at a fixed rate that is independent 

of load; this produces sloped lines that share a common decay rate (mean lifetime) and never cross. 

The same is also true of the sudden death account (Fig. 4, yellow dashed lines), which extends the 

pure death account by proposing a 4-second window of time in which working memory is immune to 

degradation17. Only the proposed evolutionary process produces both effects (Fig. 4, green solid lines). 

 It is conceivable that the proposed process could be used to describe both iconic and working 

memory, together, as a single process. Iconic memory was initially considered to be a unitary system, 

but was later fractionated into two distinct subcomponents, one providing visible persistence (i.e., the 

experience of seeing a stimulus after its removal), the other providing informational persistence (i.e., 

remembering something about a stimulus after its removal36. Visible persistence is distinct in its 

phenomenology from working memory, as memories are rarely experienced as being seen, but 

informational persistence and working memory have long been conflated. For example, studies of 

visual working memory often test at durations of 500–1000 ms, a point in time at which there is a 

non-negligible contribution of iconic memory to task performance18. We find that the evolutionary 

model provides excellent fits to the forgetting functions of iconic memory that have been measured in 

previous experiments (Fig. 5). The evolutionary model was fit to data from Yang (1999) by 

minimizing the squared error between the data and the model's predictions using Nelder–Mead 

simplex search over the model's parameters18,37. Experimental evidence of a distinct iconic storage 

system underlying informational persistence comes from a variety of experiments, not all of which 

rely on its timing. However, the closeness of fit between model and data suggests that informational 

persistence in iconic memory may be the initial moments of maintenance in a lengthier short-term 

storage system. 
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Fig. 4. Comparing the forgetting functions of the classic, pure death, sudden death, and evolutionary models. 
Subplots show the forgetting function for a particular load (1, 2, 3, 4, 6, 8, or 12 objects). Competing models fail 
to capture important aspects of the data. The classic model (grey dashed line) does not change over time. The 
pure death model (blue dashed line) has a fixed rate of forgetting, one that is too quick for low loads (K = 1, 2, 
and 3) and too slow for high loads (K = 8 and 12). The sudden death model behaves similarly to the pure death 
model. The evolutionary model succeeds, with slow forgetting at low loads and quick forgetting at high loads 
(best-fit parameters N = 58, p = 0.82, tstep = 0.01, and s = 7). The form of each forgetting function is derived in 
Supplementary Equations. We also considered the effect of individual differences on the predictions of each 
model (Figs. S1–6).  

 

Fig. 5. The evolutionary model can be used fit the full time course of visual memory as a single process. Data 
are replotted from Yang (1999). Each subplot is data from the participant whose initials appear in the lower left 
corner of that subplot. The stability threshold was fixed at s = 1. 

Extending the evolutionary model 

Evolutionary dynamics provides a rich framework in which to extend our account of visual memory. 

For example, it is likely that the neural substrate over which visual memory maintenance operates is 

in some way structured—perhaps as a gridded visuotopic maps like those found in visual areas in the 

brain, or as a scale-free network, like so many other biological systems38–40. Evolutionary graph 

theory, which extends evolutionary dynamics to structured populations, is a natural tool for specifying 

the interaction network of the mnemonic commodity and exploring how such structure impacts the 

stability of memories41. Similarly, frequency-dependent fitness, where the success of an individual 

depends on the abundance of that individual’s type, is analogous to a memory maintenance policy 

that selectively maintains memories according to their stability (e.g., by purifying, selectively 
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maintaining the strongest memories, or balancing, selectively maintaining those memories on the 

brink). 

On a process model of forgetting 

In the context of visual working memory, encoding and maintenance are often viewed as a process in 

which a limited store fills up during encoding and then remains mostly stable, perhaps with whole 

object representations being lost one by one over time. Importantly, in this view, encoding and 

maintenance happen independently over stored objects, resulting in exponential decay functions with 

the same rate for all memory loads. Load-dependent forgetting suggests an alternate view: visual 

memory representations compete for a commodity that is at least partially shared among them, such 

that the success of maintenance for one structure is affected by that for the others, thereby introducing 

a dependency of forgetting on load. Our proposed evolutionary model is the simplest instantiation of 

this principle, with a mental commodity fully shared across representations. 

 By constructing an evolutionary model of memory degradation that operates over the natural 

units of visual memory allocation and maintenance—those of a mnemonic commodity, rather than 

whole objects—we are able to build better process models of memory maintenance and its dynamics. 

Here, we focused on short-term visual memories. But just as the framework of evolutionary theory 

has been applied across many domains and scales, from alleles to words and from cells to societies, so 

too might our approach, when appropriately extended, be applied to memory maintenance in more 

complex systems, such as the transactional and collective memories of groups. 

Methods 

Participants 

We recruited 1000 participants using Amazon Mechanical Turk, an online labor market where people 

perform short computer-based tasks for pay42–45. The number of participants was chosen before 

collecting the data. One thousand trials per condition is 5–10× the typical sample size in comparable 

studies; simulations suggest it is enough to provide accurate measurements even in cases of moderate 

to severe degradation of memories. Each participant was paid $0.50 for a few minutes of work. 

Recruitment and testing was executed in accordance with Harvard University regulations and 

approved by the Committee on the Use of Human Subjects in Research under the Institutional Review 

Board for the Faculty of Arts and Sciences. 

Stimuli 

The stimulus consisted of a set of 1–12 colorful dots. The dots were arranged in a ring around a small 

central fixation point. Each dot appeared in one of twelve locations spaced equally around the ring, 
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with the constraint that each dot had its own location. Dots were randomly assigned one of 180 

equally spaced equiluminant colors drawn from a circle (radius 59°, center L=54, a=18 and b=–8) cut 

out from the CIE L*a*b* color space. Stimuli were rendered in a browser. The viewing distance was 

approximately 50 cm. 

Procedure 

A schematic diagram of the procedure appears in Fig. 6. The participant pressed the space bar to 

begin the trial. The stimulus immediately appeared for 250 ms and then disappeared. Participants 

were asked to remember the colors of the presented dots. The screen remained blank for the retention 

interval. Once the waiting period was over, a small cue appeared in the location of one of the dots, 

selected at random. The participant used the mouse to select the remembered color of the cued dot. 

Colors were selected by moving the mouse in a circle around the center of the display. A dot appeared 

at the center of the display and was continuously updated with the currently selected color. 

Participants registered their selection by clicking. No feedback was provided. There were ten possible 

retention intervals (1/32, 1/16, 1/8, 1/4, 1/2, 1, 2, 4, 8, or 16 s) and seven possible memory loads (1, 2, 

3, 4, 6, 8, and 12 objects), for a total of 7 × 10 = 70 test trials. The order of the trials was randomized 

so that the participant would not know at the time of encoding for how long they would need to 

remember the objects. There were 6 practice trials, 1–6 objects in ascending order, all with a retention 

interval of 1 s. There were negligible practice effects during the test trials, suggesting that our training 

procedure was sufficient for participants to perform the task well (Fig. S9). 

 
Fig 6. The memory task. Participants stare at a small cross at the center of the screen. A set of colorful dots 
briefly appears. After a delay, the location of one of the dots (selected at random) is marked with a cue. The 
participant is asked to report the color of the dot that appeared at the marked location. The error is the difference 
in color between the reported color and the true color. Here, the participant makes a big error, reporting the green 
object as orange. 

Extracting the empirical forgetting functions 

First we excluded participants who showed weak evidence of having faithfully completed the task. To 

do this, for each participant, we compared two models of performance using the Akaike information 

criterion. The first model was a two-parameter model25 where with probability 1–g the participant 

remembers the stimulus with fixed fidelity σ, the dispersion parameter of a von Mises distribution (a 

circular analogue to the normal distribution), and with probability g guesses blindly. The other model 
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was a zero-parameter model where the participant always guessed blindly. Since our null model — 

complete guessing for all 76 trials — is so weak, our criterion for inclusion was strict, AICC ≥ 10, 

which constitutes strong evidence of the presence of memory46. This strict criterion may inadvertently 

exclude participants with poor working memory, though the results we find are comparable when 

relaxing the inclusion criterion to AICC ≥ 3, which constitutes moderate evidence of memory. 

Next, we combined participants' data into a super-subject. The main manipulations of time and load 

were performed within each subject — one trial per condition per participant — but the analysis 

combined the data together. Though this is necessary to achieve sufficiently precise measurements, it 

leaves open the possibility that variability among people in the form of individual differences will 

affect the shape of the measured curves (see Supplementary Note). We fit a four-parameter variable-

precision model47,48 to arrive at an estimate of the guess rate g separately for each duration and load K. 

The product (1–g)K, the average number of remembered objects, is plotted in Figs. 2, 3, and 5. 

Analysis was performed using MemToolbox 1.0.0 49. 

Estimating mean lifetimes 

Mean lifetimes were estimated by fitting an exponential decay model to the raw error data. The 

exponential decay model is a time-based generalization of the two-component model described in the 

previous section. In the exponential decay model, the number of remembered objects Y falls 

exponentially with time t, such that Y(t) = β 
–t/τ, where τ is the mean lifetime and β is the number of 

encoded objects at t = 0. Memory quality at each duration, as quantified by the dispersion parameter 

of the corresponding von Mises distribution, was allowed to vary freely. A loose prior was placed 

over each parameter for the purposes of estimation. The prior on β was uniform over the full range, 0 

to the number of presented objects. The prior on the bias was uniform over the full range, –π to π 

radians. The prior on τ was log-normal with a mean of 20 s and a standard deviation of 2 ln units. The 

prior on the dispersion parameter of each von Mises distribution was log-normal with a mean of 7.4 

and a standard deviation of 1 ln unit. The model was fit with MCMC using PyMC version 2.2 50. 

Strength of evidence for crossover 

For each possible pairing of tested set sizes, we measured the strength of evidence in favor of a model 

where the forgetting function for the greater set size crosses over that for lesser set size (i.e., where it 

starts higher and ends lower) to one where it does not cross over. Strength of evidence was measured 

using the Bayes factor, the ratio of the posterior odds to the prior odds. The prior odds were 1 : 1. The 

prior probabilities on model parameters were the same as in the previous section. 
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1 Supplementary Equations: Deriving forgetting functions

In the following derivations, we suppose that the participant is asked to remember a set of K
things (the memory load), stored as objects, features, or hierarchical bundles of features (hereafter,
“mnemonic structures” or just “structures”). We further suppose that visual memory is limited
and imperfect, such that only Y ≤ K of the structures are stored. The quantity Y is allowed to
vary as a function of the time t since the offset of the stimulus. Then, for each model we can define
a forgetting function that relates to time the expected number of stored structures. For each of the
four models of visual memory compared in the main text, we derive expressions for its forgetting
function.

1.1 Model #1: Classic

The classic model of the time course of visual memory, still used in modern applications[1, 2, 3],
emerged in the 1960s from research using the partial report paradigm[4]. That work revealed the
existence of iconic memory, a storage system with a high capacity and whose contents is short-lived,
typically fading within a second[4]. Under the classic model, working memory and iconic memory
are together responsible for behavioral performance. The contribution of working memory is at
most its full capacity β, which is unchanging over time. The contribution of iconic memory above
and beyond that of working memory is often called the “partial report superiority effect” and is
at most all of the remaining K − β things that were not stored in working memory. The partial
report superiority effect has been found to decline exponentially as a function of time, and so the
forgetting function of the classic model is given by

E[Y (t)] =

{
β + (K − β)e

−t
τ if β ≤ K

K if β > K,
(1)

where τ is the mean lifetime of an item held in iconic memory.

1.2 Model #2: Pure death

The previous model assumed that working memory is stable over time. But working memory is
known to degrade [5, 6]. For simplicity, we assume that degradation in working memory is a pure
death process in which structures are lost independently over time and independently of each other,
each having a mean lifetime of τ2. First consider the case of β ≤ K, where working memory is
exhausted. In this case, the probability that a randomly-chosen structure is stored in working

memory is β
K e

−t
τ2 . The probability that it is stored in iconic memory is e

−t
τ . Thus the forgetting

function, which tracks the expected number of objects held in at least one of the two systems (those
not held in neither system), is given by

E[Y (t)] = K −K

(
1− β

K
e−t/τ2

)(
1− e−t/τ

)
. (2)

In the case of β > K, where working memory has room to spare, the term β
K is replaced by unity

because every structure is guaranteed a place. In the limit τ2 → ∞, the pure death model reduces
to the classic model.

2



1.3 Model #3: Sudden death

In 2009, Zhang & Luck proposed a “sudden death” model where after a window of initial stability
lasting approximately four seconds, entire objects are lost over time, but the quality of those that
survive is constant [5]. A reasonable way to formalize this model is to equip the pure death process
with an initial grace period that lasts until time tdeath. The forgetting function for this sudden
death model is then governed by the classic model when t < tdeath and by the pure death model
when t ≥ tdeath. Note that, because of the initial grace period, when used in the sudden death
model, the term t

τ2
in Equation 2 must be replaced by t−tdeath

τ2
.

1.4 Model #4: Evolutionary model

Here, we derive the forgetting function of the evolutionary model with the stability threshold set to
s = 1, i.e., the Moran process [7, 8]. For s ≥ 1, we determined the forgetting functions numerically.

We consider N quanta, each of which is assigned to one of the K structures at any given time.
We suppose that the structures stored in these quanta undergo a process of neutral drift, modeled
as a continuous-time Moran or pairwise comparison process. It is convenient to scale time so that
one time unit corresponds to N “generations” of this process, so that the contents of each quantum
is updated once per unit time, on average.

1.4.1 Decay of founding lineages

When stimuli are first presented to a subject, each quantum is immediately assigned a single
structure. We consider this to be the “founding generation” of structures stored in memory. At
any subsequent time, the contents of each quantum will be a copy (or a copy-of-a-copy, etc.) of a
member of this founding generation. Over time, the lineages (copies and copies-of-copies, etc.) of
this founding generation may grow or disappear through random drift. Eventually only one lineage
will remain.

We first ask how many lineages from the founding generation will survive to time t > 0. This
question can be addressed using results from population genetics. We represent the number of
founding lineages that persist at time t a the random variable X(t). The expectation of this
random variable is [9]:

E[X(t)] = 1 +
M∑

ℓ=2

(2ℓ− 1)

(M
ℓ

)
(M+ℓ−1

ℓ

)e−(
ℓ
2)t.

1.4.2 The forgetting function

We now consider the forgetting function—that is, the expected number of distinct structures that
survive in memory at a given time. We suppose that, at time t = 0, each quantum is assigned
randomly to one of K structures. We represent the the number of structures remaining at time
t ≥ 0 by the random variable Y (t). The expected number of structures remembered at time t can
be written as

E[Y (t)] = 1 +
N∑

ℓ=2

CN,K
ℓ e−(

ℓ
2)t, (3)
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with the coefficients CN,K
ℓ given by

CN,K
ℓ = (−1)ℓ (2ℓ− 1)

(N
ℓ

)
(N+ℓ−1

ℓ

)K − 1

K
2F1

(
ℓ+ 1, 2− ℓ, 2,

K − 1

K

)
. (4)

Above, 2F1 is the hypergeometric function. The derivation of Eq. (3) is given in the next two
sections.

In the limit N → ∞ (that is, if memory is regarded as a continuous resource) the forgetting
function (3) converges to

E[Y (t)] = 1 +
∞∑

ℓ=2

CK
ℓ e−(

ℓ
2)t,

with

CK
ℓ = (−1)ℓ (2ℓ− 1)

K − 1

K
2F1

(
ℓ+ 1, 2− ℓ, 2,

K − 1

K

)
.

1.4.3 Trinomial coefficients

Our derivation of the forgetting function (3) relies on identities involving trinomial coefficients. For
nonnegative integers M, i, j with i+ j ≤ M , the corresponding trinomial coefficient is defined as

(
M

i j M − i− j

)
=

K!

i!j!(K − i− j)!
.

Trinomial coefficients arise as coefficients in the expansion of (x+ y + z)M . In particular, we have

(−x+ y + 1)M =
∑

i+j=M
i≥0,j≥0

(−1)i
(

M

i j M − i− j

)
xiyj .

From the above expansion, we can derive the following relations:

M−j∑

i=0

(−1)i
(

M

i j M − i− j

)
=

1

j!

∂j

∂yj
(−x+ y + 1)M

∣∣∣∣
(x,y)=(1,0)

=

(
M

j

)
(−x+ y + 1)M−j

∣∣∣
(x,y)=(1,0)

=

{
1 j = M

0 otherwise.
(5)
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M−j∑

i=0

(−1)ii

(
M

i j M − i− j

)
=

1

j!

∂

∂x

∂j

∂yj
(−x+ y + z)M

∣∣∣∣
(x,y,z)=(1,0,1)

=

(
M

j

)
∂

∂x
(−x+ y + z)M−j

∣∣∣∣
(x,y,z)=(1,1,0)

= −
(
M

j

)
(M − j)(−x+ y + z)M−j−1

∣∣∣
(x,y,z)=(1,1,0)

=

{
−M j = M − 1

0 otherwise.
(6)

Combining identities (5) and (6) yields a third identity:

M∑

k=j

(−1)k−jk

(
M

M − k k − j j

)
=

M−j∑

i=0

(−1)i(i+ j)

(
M

M − i− j i j

)

=
M−j∑

i=0

(−1)ii

(
M

i j M − i− j

)

+ j
M−j∑

i=0

(−1)i
(

M

i j M − i− j

)

=

⎧
⎪⎨

⎪⎩

−M j = M − 1

M j = M

0 otherwise.

(7)

1.4.4 Derivation of the forgetting function

We now derive the forgetting function (3). First we suppose that that n of the N founding lineages
remain after time t; that is, X(t) = n. Since neutral drift does not favor any structure over any
other, we can regard these n lineages as being assigned randomly among the K structures. This
situation thus reduces to the classical probability problem of randomly partitioning a set of n
elements into K or fewer subsets.

For k ≤ n, the probability that k of the K items are represented in these n lineages is

Pr[Y (t) = k|X(t) = n] =

(
K

k

){
n
k

}
k!

Kn
. (8)

Above,

{
n
k

}
denotes the (n, k)th Stirling number of the second kind—that is, the number of ways

to partition a set of n elements into k non-empty subsets. This Stirling number can be obtained
by the formula

{
n
k

}
=

1

k!

k∑

j=0

(−1)k−j

(
k

j

)
jn. (9)
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Combining Eqs. (8) and (9) yields

Pr[Y (t) = k|X(t) = n] =

(
K

k

) k∑

j=0

(−1)k−j

(
k

j

)(
j

K

)n

,

or equivalently, upon rearranging,

Pr[Y (t) = k|X(t) = n] =
k∑

j=0

(−1)k−j

(
K

K − k k − j j

)(
j

K

)n

. (10)

The trinomial coefficient in Eq. (10) arises via the relation
(
K

k

)(
k

j

)
=

(
K

K − k k − j j

)
.

Now we consider the overall expected number of items remembered at time t by summing
Eq. (10) over values of n weighted by their probabilities:

E[Y (t)] =
K∑

k=1

k
k∑

j=0

(−1)k−j

(
K

K − k k − j j

) N∑

n=1

(
j

K

)n

Pr[X(t) = n]

=
K∑

k=1

k
k∑

j=0

(−1)k−j

(
K

K − k k − j j

)
G(j/K; t), (11)

Above, G(x; t) is the probability generating function of X(t):

G(x; t) =
N∑

n=1

xn Pr[X(t) = n].

We use a previously discovered [9] formula for this generating function:

G(x; t) = x+ x(1− x)
N∑

ℓ=2

(2ℓ− 1)(−1)ℓ+1

(N
ℓ

)
(N+ℓ−1

ℓ

) 2F1(ℓ+ 1, 2− ℓ, 2, x) e−(
ℓ
2)t. (12)

Substituting in Eq. (11), we obtain

E[Y (t)] =
K∑

k=1

k
k∑

j=0

(−1)k−j

(
K

K − k k − j j

)

×
[
j

K
+

j

K

(
1− j

K

) N∑

ℓ=2

(2ℓ− 1)(−1)ℓ+1

(N
ℓ

)
(N+ℓ−1

ℓ

) 2F1(ℓ+ 1, 2− ℓ, 2, j/K) e−(
ℓ
2)t

]
(13)

Using identity (6) from section 1.4.3, we can simplify the term that is linear in j/K:

K∑

k=1

k
k∑

j=0

j

K
(−1)k−j

(
K

K − k k − j j

)
= 1.
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Eq. (13) therefore reduces to

E[Y (t)] = 1 +
K∑

k=1

k
k∑

j=0

(−1)k−j

(
K

K − k k − j j

)

× j

K

(
1− j

K

) N∑

ℓ=2

(2ℓ− 1)(−1)ℓ+1

(N
ℓ

)
(N+ℓ−1

ℓ

) 2F1(ℓ+ 1, 2− ℓ, 2, j/K) e−(
ℓ
2)t.

In summary, the expected number of items remembered can be written as

E[Y (t)] = 1 +
M∑

ℓ=2

CN,K
ℓ e−(

ℓ
2)t,

with

CN,K
ℓ = (−1)ℓ+1(2ℓ− 1)

(N
ℓ

)
(N+ℓ−1

ℓ

)

×
K∑

k=1

k
k∑

j=0

(−1)k−j

(
K

K − k k − j j

)
j

K

(
1− j

K

)

× 2F1(ℓ+ 1, 2− ℓ, 2, j/K). (14)

To simplify this expression for CN,K
ℓ we reorder sums:

K∑

k=1

k
k∑

j=0

(−1)k−j

(
K

K − k k − j j

)
j

K

(
1− j

K

)
2F1(ℓ+ 1, 2− ℓ, 2, j/K)

=
K∑

j=0

j

K

(
1− j

K

)
2F1(ℓ+ 1, 2− ℓ, 2, j/K)

K∑

k=j

(−1)k−jk

(
K

K − k k − j j

)
. (15)

Simplifying the second (nested) sum according to identity (7) from section 1.4.3, we obtain (4).

2 Supplementary Figures: Individual differences

People vary considerably in the capacity of their working memory systems, and these individual
differences are correlated with intelligence, reasoning abilities, and reading comprehension [10, 11,
12, 13]. Our analysis procedure, which combines data from multiple participants into a single
super-subject, masks such variability, and it is therefore important to consider the ways in which
the presence of individual differences might impact our results.

First, variability might alter the predictions of the classic, sudden death, or pure death models,
undermining our claim that they fail to capture features of the empirical forgetting curves. Second,
variability might alter the predictions of the proposed evolutionary model, undermining the logic
whereby a tight fit between model and data lends support to the model. We examine each of these
possibilities below.

7



2.1 Individual differences in the classic model

In the classic model, variability can arise through individual differences in the initial capacity K,
which is the number of structures encoded in working memory. Through simulation, we inject
individual differences by drawing 1 − g, the probability of encoding each object, from a Beta
distribution with parameters chosen to cover a reasonable range of variability. Figure S1 shows
that individual differences of this sort have no impact on the resulting curves.
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Fig. S 1: Individual differences in the classic model. The bottom row shows histograms of 1 − g,
the probability of successfully encoding an object in working memory. The top row shows the
resulting forgetting functions, averaged over participants. Moving rightward, columns have greater
individual differences.

2.2 Variability in the pure death model

In the pure death model, variability can arise in two ways: through individual differences in the
initial capacity β, and through individual differences in the mean lifetime τ . Variability in β is
modeled in the same way as in the classic model. Through simulation, we inject variability into the
mean lifetime by drawing t from a log normal distribution. Figure S2 shows that variability in β has
no impact on the resulting curves and that variability in τ bends each curve, but does not change
the relationship between them, which would be needed to reproduce the effects of load-dependent
stability or crossover.

2.3 Variability in the sudden death model

In the sudden death model, variability can arise in three ways: through individual differences in (1)
the initial capacity β, (2) the mean lifetime τ , and (3) the length of the window of initial stability
td. Variability in β and τ are modeled in the same way as in the classic and pure death models.
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Fig. S 2: Individual differences in the pure death model. The leftmost column shows histograms of
1− g, the probability of successfully encoding an object in working memory. The bottommost row
show histograms of τ , the mean lifetime. There are nine plots, one for each pair of distributions on
1−g and τ . Moving rightward, columns have greater individual differences in τ . Moving downward,
rows have greater individual differences in 1− g. The y-axis is logarithmic to highlight shifts away
from an exponential function (a straight line).
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Through simulation, we inject variability into td by drawing it from a log normal distribution. As
before, variability in β has no impact on the resulting curves. Figure S3 shows that variability in τ
has the same effects as it does in the pure death model and that variability in td softens the corner
at time points directly before and after the cutoff. As with the pure death model, these individual
differences change the shape of the curves, but do not impact the relationship between them.
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Fig. S 3: Individual differences in the sudden death model. The leftmost column shows histograms
of tdeath, the probability of successfully encoding an object in working memory. The bottommost
row show histograms of τ , the mean lifetime. There are nine plots, one for each pair of distributions
on tdeath and τ . Moving rightward, columns have greater individual differences in τ . Moving
downward, rows have greater individual differences in tdeath. The y-axis is logarithmic to highlight
shifts away from an exponential function (a straight line).

2.4 Variability in the evolutionary model

In the proposed evolutionary model, variability can arise in three ways: through individual differ-
ences in (1) the number of quanta N, (2) the duration of one time step tstep, or (3) the stability
threshold s. Through simulation, we inject variability into each parameter and observe the effects
on the predicted forgetting functions. Drawing N from a (discretized) normal distribution, we find
that individual differences have a greater benefit to high memory loads than to low loads, thereby
leading to a slight weakening of the crossover effect and load-dependent stability (Fig. S4). How-
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ever, a crossover is seen even with high levels of individual differences (SD of ± 2 ln units). Next,
drawing the stability threshold from a discrete uniform distribution, we again find that individual
differences have a greater benefit to high memory loads than to low loads, with considerably less
crossover, but only a miniscule effect on the presence of load-dependent stability (Fig. S5). Lastly,
drawing tstep from a log normal distribution, we once again find the same result, with slight weak-
ening of both load-dependent stability and crossover (Fig. S6). Together, these results suggest that
the predictions of the proposed evolutionary model are tolerant to large individual differences in
N , moderate individual differences in k, and large individual differences in tstep.
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Fig. S 4: Individual differences in the number of quanta of the evolutionary model. The bottom
row shows histograms of N , the total number of quanta. Moving rightward, columns have greater
individual differences in N . The top row shows the corresponding forgetting functions.

3 Supplementary Figure: The effects of practice

Here, we consider the effects of practice by tracking performance as it changes over the course
of the experiment’s 70 trials (Fig. S7). The number of remembered objects dropped slightly
(linear correlation, r = −0.30, p = 0.013), roughly 0.01% per trial (slope of linear regression,
−0.002 object/trial; intercept, 2.2 objects). There were no significant changes in memory quality
(r = 0.15, p = 0.22) or bias (r = 0.03, p = 0.81). This suggests that our training procedure was
sufficient for participants to perform the task well.
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Fig. S 5: Individual differences in the stability threshold. The bottom row shows histograms of k,
the stability threshold. Moving rightward, columns have greater individual differences in k. The
top row shows the corresponding forgetting functions.
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Fig. S 6: Individual differences in the rate of degradation. The bottom row shows histograms of
tstep, the duration of a time step. Moving rightward, columns have greater individual differences in
tstep. The top row shows the corresponding forgetting functions.
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Fig. S 7: The effects of practice. Each subplot shows changes in performance as a function of trial
number. The upper plot shows changes in the number of remembered objects. The middle plot
shows changes in memory quality (lower is better). The lower plot shows changes in bias.
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4 Supplementary Figure: Laboratory replication
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Fig. S 8: Replication in the lab. We replicated the online experiments in the lab with a group of six
participants. The tested memory loads were 1, 2, 3, and 6. The tested durations were 0.125, 0.25,
0.5, 1, 4, and 10 s. Participants were each tested for 6-8 sessions of 360 trials, 15 trials per condition
(pairing of duration and memory load), in random order. Data were fit with a hierarchical version
of the 2-component model of Zhang & Luck [14]. The plotted data is the population mean. Data
were fit using the MemToolbox 1.0.0. [15].
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