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Abstract

Working memory is a limited-capacity form of human memory that actively holds
information in mind. Which memories ought to be maintained? We approach
this question by showing an equivalence between active maintenance in working
memory and a Markov decision process in which, at each moment, a cognitive
control mechanism selects a memory as the target of maintenance. The challenge
of remembering is then finding a maintenance policy well-suited to the task at
hand. We compute the optimal policy under various conditions and define plau-
sible cognitive mechanisms that can approximate these optimal policies. Framing
the problem of maintenance in this way makes it possible to capture in a single
model many of the essential behavioral phenomena of memory maintenance, in-
cluding directed-forgetting and self-directed remembering. Finally, we consider
the case of imperfect metamemory — where the current state of memory is only
partially observable — and show that the fidelity of metamemory determines the
effectiveness of maintenance.

1 Introduction

Working memory is a storage system that actively holds information in mind and allows for its
manipulation, providing a workspace for thought [II, 2]. Its capacity is strikingly limited, perhaps to
only a few sights or sounds [B]. Using working memory is effortful: pupils dilate, skin conductance
rises, and secondary tasks become impossible to perform well [@]. Much of the research on working
memory has focused on characterizing its limits and determining what gives rise to them. For
example, working memory capacity is known to be lower in young children and the elderly [5],
correlates strongly with a person’s fluid intelligence [, 7], is affected by sleep schedule [], and can
be impaired in people with mental disorders such as schizophrenia [B]. From this work, we have
learned a considerable amount about how much can be remembered and who is best at remembering
it.

Information held in working memory is malleable [J]. It can, for example, be remembered and for-
gotten intentionally through the processes of directed forgetting and directed remembering, which
prioritize some experiences over others for later access [[[{J, IT]. These directed maintenance mech-
anisms are closely related to cognitive control and to the top-down processes that determine our
conscious thoughts from moment to moment [TZ]. At times, these control processes can backfire,
causing unwanted thoughts and memories to linger despite our best intentions [[3].

Given the flexibility available to the working memory system, a question naturally arises: What is
the optimal way to maintain memories? What is the space of possible maintenance strategies, and
how successful is each of them in retaining information over short durations?

We approach this question by likening working memory maintenance to a sequential decision pro-
cess in which, at each moment, a cognitive control process decides which memories to prioritize.



We focus on a particular kind of sequential decision process known as the Markov decision process
(MDP) [I4], which provides an abstract mathematical framework for describing decision-making
in a setting that is partly under control of the decision-maker (here, the maintenance process) and
partly under control of the environment (here, the degradation process). Besides being well-suited
to describing the problem of memory maintenance, the MDP has the added benefit of being one of
the most well-understood problems in the mathematics and psychology of reinforcement learning.
Thus, having established the connection, existing concepts and tools from reinforcement learning
can be brought to bear on the dynamics of memory maintenance.

The plan of the paper is as follows. Section 2 describes the essential behavioral phenomena of mem-
ory maintenance and control. Section 3 formulates the problem of memory maintenance as an MDP.
Section 4 begins by describing the form of a solution to the maintenance problem — a maintenance
policy — and proceeds by computing the optimal policy under various reward functions. Section 5
shows how the optimal policy, and cognitively-plausible approximations thereof, can reproduce the
behavioral phenomena from Section 2. In Section 6, we extend our framework to the case of imper-
fect metamemory, describing memory maintenance in a partially observable mind —i.e., in situations
where the maintenance system has incomplete or uncertain information about the current status of
actively-held memories. Section 7 discusses the results and suggests new avenues of research made
possible by formulating the problem of memory maintenance in this way.

2 Phenomena of memory maintenance and control

The essential behavioral phenomena of active memory maintenance and control involve monitoring,
prioritizing, and controlling memories:

Monitoring comes in the form of metamemory, an awareness of one’s memories and the systems that
store them. Metamemory is often studied in the context of long-term memory, where it is invoked
to explain phenomena such as tip-of-the-tongue states and the feeling of knowing [IS, T6, I7].
Healthy individuals have a rich set of metamemory skills that guide learning, decision making, and
action [I8]. Neurological diseases, such as Alzheimer’s and Korsakoff’s syndrome, adversely affect
metamemory judgments, causing a mismatch between what is remembered and what is believed to
be remembered [I9].

Memories can be forgotten intentionally. In experiments on this process of so-called “directed for-
getting”, participants study some information and are then directed to remember or forget specific
elements of what was studied [0, IT]. Memory tends to be better for the to-be-remembered informa-
tion than for the to-be-forgotten information. For example, in Woodward & Bjork [20], participants
studied a list of words and were later asked to recall as many of them as possible. This is the pop-
ular free recall paradigm used extensively in studies of long-term memory. Following each word’s
presentation, a cue appeared instructing the participants to remember or to forget the word. Later,
participants were asked to recall all the words from the studied list, regardless of how those words
initially had been marked. The recall task was challenging. Critically, its difficulty depended on how
the word had been marked: words marked as to-be-remembered were recalled 23.3% of the time,
whereas those marked as to-be-forgotten were recalled only 4.7% of the time. This is the hallmark
of directed forgetting, which has been demonstrated in both long- and short-term memory [20, TT].

Directed forgetting is intimately related to cognitive control and to the processes that determine our
conscious thoughts from moment to moment [I2]. For example, increasing cognitive load decreases
people’s ability to suppress unwanted thoughts [21]], and young children and the elderly have deficits
in attentional processing, which makes it more difficult for them to abandon memories and thoughts
that are no longer relevant [22].

3 Computational framework: the Markov decision process

A Markov decision process is defined by a state space, a set of possible actions, a transition model,
and a reward function. Each is defined in turn below:

State space. We suppose that there is a memory-supporting commodity, akin to attention, that can
be divided into quanta, each of which is assigned to a particular memory. The quanta might, for
example, represent cycles of a time-based refreshing process [23] or neural populations in prefrontal



cortex that represent “token” encodings of visual events [24]. The more of the commodity assigned
to a memory, the stronger and more robust it is. The state of working memory is then an allotment of
the quanta to each memory, which may receive the entire commodity, only a portion of it, or perhaps
none at all. The state space thus forms a (K — 1) regular discrete simplex, where K is the number
of memories held in working memory and where the discretization is determined by the number of
quanta N.

Actions. At each time step, the maintenance process selects a quantum as the recipient of mainte-
nance. Thus the set of possible actions A is of size N, one action per quantum, and does not depend
on the state.

Transition model. The transition model specifies the probability of moving from one state of mem-
ory to another and is thus a formal model of memory degradation. We will make use of the transition
model proposed in [25] — i.e., a Moran process, a model of evolution in finite populations that orig-
inated in population genetics [26] and which has been used to describe dynamic processes in diverse
settings. Under the Moran process, at each time step a quantum degrades because another quantum
interferes with it or replaces it. The degraded quantum is chosen randomly, uniformly across all the
quanta. The interfering (or replacing) quantum is determined by the action chosen by the mainte-
nance process. We can write the state as an allotment of quanta to memories, s = [n,na, ..., nk|,
summing to N, the number of quanta. At each time step, one of the n’s is incremented and one is
decremented. The incremented n is determined by the chosen action — if the chosen action main-
tains a quantum belonging to that memory, it is deterministically incremented. The decremented
n is chosen with probability proportional to n because the quanta are all equally likely to degrade.
This defines a transition model Pr(s’ | s, a), which gives the probability of landing in state s’ given
that the agent took action a while in state s [, P8].

Reward function. Finally, there is the reward function. By definition, the agent’s goal is to maximize
the total reward that is received. The reward function is a mapping from states to an amount of
reward that is received for landing in that state. In the case of most working memory tasks, which
are episodic (in the sense that information arrives all at once and is then discarded at the end of the
trial), and which have a retention interval that is known to the participant, the reward function is
time-varying, taking on a value of zero everywhere until the moment of the test, at which point it
becomes positive for some states and (possibly) zero for others. For simplicity, we assume that the
retention interval is chosen in such a way (e.g., from an exponential distribution) that the reward
function is stationary. The specifics of the reward function inevitably depend on the demands of
the task and are usually implicit in the experiment’s design and feedback mechanism. For example,
tasks using the “continuous partial report paradigm” require participants to hold information in mind
for a fixed duration, e.g., 2000 ms, with reward provided in proportion to the similarity between the
participant’s response and the true value. Other tasks provide all-or-none feedback.

We will consider three reward functions relevant to the goals of a memory maintenance system. The
first applies to tasks with an all-or-none design in which the memorizer receives full credit for having
remembered enough about the cued memory to access it (i.e., having at least k£ quanta assigned to
it at the time of the test, where k is the strength of the weakest accessible memory) and otherwise
receives no reward. This reward function is appropriate when scoring performance using a high-
threshold model [2Y, BU], considering only the probability of remembering while ignoring accuracy.
In the second, the memorizer is rewarded for having at least one sufficiently strong memory (i.e.,
one with greater than some threshold number of quanta), but where remembering something about
everything is unnecessary. In the third, there is an imbalance across memories in the reward given
for remembering them: some are more valuable than others.

4 Maintenance policies, optimality, and approximations

The Markov decision process is a general framework for describing the problem of sequential de-
cision making, but it does not specify the particular strategy used by the agent to make a decision.
That strategy is defined by a policy, a function that specifies an action (or probability distribution
over actions) for each possible state. Much of modern research on MDPs focuses on finding the
optimal policy, one that maximizes the (possibly time-discounted) reward.



The simplest maintenance policies do not depend on the current state of memory. Rather, they
produce the same behavior in every state. Borrowing terminology from game theory, in which a
player can adopt a strategy that does not depend on the behavior of the opponent (e.g., a player
in the Prisoner’s Dilemma who always defects), we call these maintenance policies unconditional
[31]. An example of an unconditional maintenance policy is all-1i, which always selects the ith
quantum as the target of maintenance. A second unconditional strategy is random, which selects
a target at random, uniformly over all quanta — this maintenance policy is equivalent to a neutral
Moran process.

Conditional policies, in contrast, depend on the state (e.g., a player in the Prisoner’s Dilemma who
plays tit-for-tat, responding to cooperation with cooperation and to defection with defection). In the
context of memory maintenance, consider for example the strategy all-j, which selects a quantum
uniformly from among those assigned to memory j if one exists, otherwise choosing randomly
among all the quanta.

The optimal policy is conditional. Using linear programming, we computed the optimal policy for
a time-discounted variant of the above MDP under each of the reward functions described above,
setting N = 10, K = 3, and the discount factor to 0.99. The optimal policy is different under
each reward function, reflecting the differing demands of the task. When the reward function en-
courages having at least one highly-stable memory, the optimal policy tends to maintain memories
that are already stable, preferring to select a quantum assigned to a memory with an above-median
allocation of quanta 64% of the time. In contrast, when the reward function encourages good per-
formance on the task, which requires storing more than just one memory, the optimal policy tends to
maintain memories that are least stable, preferring to select a quantum assigned to a memory with
an above-median allocation of quanta only 29% of the time. When the reward function encourages
prioritization of a particular memory, the optimal policy deterministically maintains that memory so
long as it has not fully degraded, in which case it chooses randomly among the others — this is the
all-7j maintenance policy described above. At a minimum, then, any cognitive implementation of
memory maintenance must be able to selectively maintain memories according to their strength and
according to their identity.

The optimal policy can be approximated by a simple strategy that rests on plausible cognitive mech-
anisms, inspired by a psychological principle known as Luce’s choice axiom [32, B3]. According to
the axiom, when faced with a choice among alternatives, a decision-maker will exhibit ‘matching
behavior’, selecting options with probability proportional to their value. Matching behavior was
originally studied in the context of learning theory, where value is defined as the expected reward
[34, 77]. Thus if two levers offer rewards in a ratio of 2:1, an individual that displays matching
behavior will press the more rewarding lever twice as often. Here, value is akin to memory strength
and is defined by the number of quanta dedicated to a memory.

In practice, it is common to consider a generalization of matching behavior in which a real-valued
parameter L determines the decision-maker’s sensitivity to the signal. In this so-called “softmax”
generalization of matching behavior, the probability of selecting option a from the set of alternatives
A is given by

Ple) = =

beA

where v(z) is the strength of the signal generated by « and where L determines the decision maker’s
sensitivity to the signal [27, BS].

Five values of L are particularly significant for the process of memory maintenance. When L = 0,
the process is unconditional (i.e., insensitive to the signal). This corresponds to a neutral process.
When L = 1, the process gives preference to objects in proportion to how strongly they are currently
represented. When L. — oo, the winner takes all. In contrast, when L. = —1, the process gives
preference to objects in proportion to how weakly they are currently represented, and in the limit
L — —o0, the loser takes all.

The Luce family of policies can be extended to give graded preference to certain memories over
others. To do this, we first define a priority function f that assigns a score to each memory. For
example, memories A, B, and C may receive scores of 4, 3, and 1, meaning that A has 4x the
priority of C and B has 3 x the priority of C. Quanta are selected with probability proportional to the



priority score of the memory to which it is assigned. For a system with N quanta, of which n, are
assigned to memory A, ng to B, and n¢ to C, the probability of selecting a quantum ¢ that is of type
J is given by

f)
Pr(q) = ——————.
@ f()n;

j€{AB,C}

This is equivalent to adding selective pressures to the neutral process and allows for prioritization
and graded directed-remembering.

5 Reproducing the behavioral phenomena

The Luce family of maintenance policies, which approximate the optimal policy for the MDP de-
fined in Section 4, can reproduce the effects of prioritization, directed forgetting, and self-directed
remembering in a single model. We simulated performance of a memorizer who uses the Luce
family of maintenance policies in a directed-remembering task (Fig. 1a), a priority-based graded
directed-remembering task (Fig. 2a), and a self-directed remembering task (Fig. 1c). The simulated
observer shows all three forms of maintenance behavior described in Section 2. In the directed-
remembering task, the agent selectively maintains the target memory at the expense of the others
(Fig. 1a). In the priority-based graded directed-remembering task, the agent maintains the target
memories better than the non-target memory, while devoting more resources to the target mem-
ory with the higher priority (Fig. 1b). In the self-directed remembering task, the agent selectively
maintains the least-stable memory and remembers more because of it (Fig. 1c).
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Figure 1: Reproducing directed remembering, priority-based directed remembering, and self-
directed remembering by simulating the Luce conditional maintenance policy. Panels show for-
getting functions for each of three objects that were presented (purple, yellow, and red lines), aver-
aged over 10,000 trials. A forgetting function tracks the amount of information stored in memory
as it falls over time. The dashed vertical line marks the onset of the cue. In the upper panels, the
participant uses the random policy, which gives equal priority to all three objects. Before the cue,
the participants behave identically. After the cue, the behavior diverges. In Panel A (directed re-
membering), performance is better for the target object (yellow) than for the other two. In Panel B
(priority-based directed remembering), performance is better for the high-priority memory (yellow)
than for the low-priority memory (red), and worst for the non-target memory (purple). In Panel C
(self-direct remembering), performance is improved because maintenance is directed to whichever
memory is currently least stable. Simulations were run with parameters N = 64 and K = 3 for 5000
steps. The cue appeared at time step 1500.



6 Partially observable minds

The framework of a Markov decision process makes a strong commitment to the accessibility of the
memory state to the memory maintenance system: it assumes perfect, real-time, no-cost metamem-
ory. However, metamemory is imperfect [[[3, T8].

By generalizing the MDP to a partially-observable world, we can accommodate situations of imper-
fect or costly metamemory. A partially observable world is one in which the agent does not know
exactly what state it is in, making it impossible to directly carry out conditional policies that depend
on the state. Often the agent has available some instrument (a “sensor’’) for measuring or sensing the
state. In the case of memory maintenance, the sensor is metamemory. The agent uses the sensor to
update its beliefs about the state. Thus the partially observable Markov decision process (POMDP)
extends the MDP through the introduction of a sensor model, which describes the information about
the state that is provided by each observation, and a belief state, which is a probability distribution
over the state space that embodies the agent’s beliefs about the current state [B6, B7]. The Dirich-
let distribution is a convenient representation of uncertainty about the state of memory resource
allocation because it is the conjugate prior for multinomial data.

In a partially observable mind, inefficiencies of metamemory limit the efficacy of flexible mainte-
nance behaviors. This is because in a world where the future depends on the past, one who does not
even know the present cannot suitably plan for what is to come. We demonstrate this dependence
by defining a simple metamemory agent and then simulating its behavior with different levels of
efficiency. Metamemory observations made by the agent come in the form of object labels sampled
with probability proportional to their strength (that is, the number of quanta assigned to them). This
defines the sensor model. The agent is initially unaware of the allocation of the commodity, repre-
sented by a belief state initially set to a Dirichlet distribution with concentration parameters 1, 1, and
1, which is equivalent to a uniform distribution over all possible allocations. At each time step, the
agent makes m observations. We assume that the metamemory system has no memory of its own and
thus considers only the observations made at the current time step (see below for a brief discussion
of optimal filtering, in which the metamemory system also considers past observations). To avoid
the problems caused by sampling zero quanta of a certain type, we use additive smoothing by adding
one to all the counts. These counts are used by the Luce policy, with exponent 1. The efficiency
of metamemory can be varied by altering the number of observations made at each time step. This
formulation makes it possible to vary efficiency between two extremes. At one extreme, m = 0 and
the agent gains no information about the state. At the other extreme, in the limit m — oo, the agent
has perfect information about the state. Intermediate efficiencies lead to intermediate performance
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Figure 2: Inefficiencies of metamemory limit the efficiency of memory maintenance. On the left are
forgetting functions for a simulated agent whose memory is only partially observable. At each time
step the agent draws m quanta (with replacement) and observes their assignment. Selection happens
according to the procedure in the main text. On the right, performance increases with the number of
samples taken. Simulations were run with settings N = 128, K = 12, and L =-1.



7 Discussion

In this paper, we approached problem of memory maintenance by demonstrating an equivalence
to a Markov decision process in which, at each moment, a cognitive control mechanism selects a
memory as the target of maintenance. The challenge of remembering is then finding a maintenance
policy well-suited to the task at hand. We computed the optimal policy under various conditions and
defined plausible cognitive mechanisms, embodied by the Luce policy, that can approximate these
optimal policies. Framing the problem of maintenance in this way makes it possible to capture in
a single model many of the essential behavioral phenomena of memory maintenance, including di-
rected remembering, priority-based directed remembering, and self-directed remembering. Finally,
we considered the case of imperfect metamemory — where the current state of memory is only
partially observable — and show that the fidelity of metamemory determines the effectiveness of
maintenance.

Perhaps the biggest payoff that comes from framing the problem of memory maintenance in this
way is the set of new questions that it makes possible to ask.

For example, one might ask where maintenance policies come from. Specifically, how are they
learned? Methods such as temporal difference learning have emerged as candidate learning mech-
anisms used in the brain to learn policies that guide behavior, and it has become popular to relate
this particular class of learning algorithms to known reward circuitry in the brain [BR, BY, &0]. Par-
ticularly relevant is the work of [41], who discuss methods for learning to use working memory by
temporal difference methods. Specifically, they showed how temporal difference learning can be
used to shape representations in the prefrontal cortex so that they are useful for working memory
[&T]. Also relevant is the work of [47], who developed an “actor/critic” model of the neural sub-
strates of working memory and cognitive control. They showed that an active gating mechanism
that controls the contents of working memory can be learned through learning mechanisms from
reinforcement learning [&7].

Finally, it may be useful to consider other resource allocation tasks that are similar in structure to
that of memory maintenance — e.g., scheduling and queuing. Much of the original work on these
problems came from the field of operations research, which originated from military planners in
WWII and which today considers the optimal solutions to decision making and resource allocation
tasks in a variety of settings, often in the context of organizational behavior [23] or electronic sys-
tems [E4, A5]. Having made the link to these related problems, it may be fruitful to consider known
solutions as candidate psychological mechanisms. For example, queuing theory is a set of tools for
considering resource allocation tasks that feature the continuous arrival of entities that require the
resource (e.g., callers to a company’s customer support center) [E6]. Most of the popular working
memory tasks are episodic, with information arriving all at once and then being discarded at the end
of the trial. Our visual experience is not always so episodic; rather, it is sometimes necessary to
update the contents of working memory with new information or redirecting maintenance in light
of new goals [&7, BR]. Looking towards queuing theory, for example, may provide insight into this
problem of maintenance in the face of continuously-arriving information.
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