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Abstract—The craft of writing is hard despite the abundance of thoughtful
advice available in usage guides and other sources. This is partly a problem of
medium: amassing advice is not enough to improve writing. Writing would thus
benefit if our collective knowledge about best practices in writing were extracted
and transformed into a medium that makes the knowledge more accessible to
authors.

We built Proselint, a Python-based linter for English prose that identifies
violations of style and usage guidelines. Proselint is open-source software
released under the BSD license and is compatible with Pythons 2 and 3. It
runs as a command-line utility or as a text-editor plugin. Proselint’s modules
address redundancy, jargon, illogic, clichés, unidiomatic vocabulary, sexism,
inconsistency, misuse of symbols, malapropisms, oxymorons, security gaffes,
hedging, apologizing, and pretension. Furthermore, Proselint is extensible, en-
abling creation of domain-specific modules and implementation of house style
guides.

Proselint can be seen as both a language tool for scientists and a tool for
language science. On the one hand, Proselint can help scientists communicate
their ideas to each other and to the public by improving their writing. On the
other hand, scientists can use Proselint to measure language usage, to provide
style- and usage-based features for tasks such as authorship identification, and
to explore the factors that make a linter useful (e.g., a low false discovery rate).

Index Terms—linters, writing tools, copyediting

The problem

Writing is hard even for the best writers, and it’s not for lack
of good advice — a tremendous amount of knowledge about
the craft is strewn across usage guides, dictionaries, technical
manuals, essays, pamphlets, websites, and the hearts and minds
of great authors and editors. Consider Garner’s Modern English
Usage, an authoritative usage guide with 11,000 entries covering
a broad range of advice that can help writers produce clear and
idiomatic prose [Gar16]. Or consider the Federal Plain Language
Guidelines, a guide created by employees of the U.S. federal
government to promote writing that is clear, concise, and well-
organized [Pla11]. Professional conferences such as the annual
meeting of the American Copy Editors Society are dedicated to
sharing knowledge about editing prose. And within the academy,
organizations such as the American Psychological Association
publish manuals whose guidance on style has been adopted as
a standard [Ass94].
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Advice on writing touches upon everything from superficial
conventions to the deepest reflections of our society and its
attitudes. For example, advice concerning the preferred forms of
words such as connote (vs. connotate) may help to prune needless
variants in spelling, but is unlikely to affect the reader’s under-
standing of the text and its author. In contrast, advice concerning
needlessly gendered language (woman scientist, policeman) helps
to eliminate terms that may perpetuate social inequality [MS01],
[Phi04].

Amassing a pile of advice is not enough to make writing better.
This is because advice, though it may be principled, thoughtful,
and worth following, is hard to apply in new settings once it has
been learned [AI00]. Thus even if an author could absorb all the
knowledge contained in extant sources of advice on writing, the
author would still face the problem of recalling and systematically
applying that knowledge during the acts of writing and editing.
Furthermore, developing a new habit (linguistic or otherwise) is
slow, costly, and effortful [FH10], causing errors to appear even if
the author knows the rules.

Today, an author who wishes to improve a piece of writing by
applying the collective wisdom of experts must rely on indirect
means. Publishers often use a division of labor in which dedicated
staff copyedit a piece to their satisfaction. For example, The
New Yorker employs an editing team of fact checkers, editors,
grammarians, and others [Nor]. Individuals often uses software-
based tools such as spelling and grammar checkers that mark
unrecognized words and purported violations of grammatical rules
[HJM+82], [CM83], [Ver00], [Nab03], [Mił10], [PRR12].

Neither approach fully solves the problem of successful adop-
tion of best practices in writing. Few people have the resources
needed to outsource editing to external staff. Furthermore, doing
so inevitably introduces a delay because copy editors must read
the text carefully and are normally unavailable during the act
of writing. By the time an editor’s notes are received, then, an
opportunity to strengthen the writer’s craft has passed. Time-
sensitivity exacerbates this problem because delays introduced by
the editing process may diminish the communication’s value. In
contrast, software-based tools for writing are automated and rela-
tively fast, but are typically incomplete, imprecise, or inaccessible
(see Proselint’s approach).

The solution

To solve this problem, we built Proselint, a real-time linter for
English prose. A linter is a computer program that, like a spell
checker, scans through a document and analyzes it, identifying
problems with its syntax or style [Joh77]. Proselint identifies vio-
lations of expert-endorsed style and usage guidelines1 and gently
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alerts the writer of those violations as they are committed, an
ideal opportunity to elicit long-term changes in behavior [FS57].
In doing so, Proselint gives voice to the experts while teaching at
a speed and scale unreachable by humans.

Proselint is open-source software released under the BSD li-
cense and compatible with Pythons 2 and 3. It runs as a command-
line utility or editor plugin for Sublime Text, Atom, Emacs, vim,
etc. It outputs advice in JSON and the standard linting format
(SLF), promoting integration with external services [Was90] and
providing human-readable output. Proselint includes modules on
a variety of usage problems, including redundancy, jargon, illogic,
clichés, sexism, misspelling, inconsistency, misuse of symbols,
malapropisms, oxymorons, security gaffes, hedging, apologizing,
pretension, and more (see Tables 1 and 2 for a fuller listing).

Proselint is both a language tool for scientists and a tool
for language science. On the one hand, it can help scientists
communicate their ideas to each other and to the public by
improving their writing. On the other hand, scientists can use
Proselint to study language and linting.

A language tool for scientists

Scientists use the written word to communicate to each other
and to the public. Proselint improves writing across a number
of dimensions relevant to science communication, including con-
sistency in terminology & typography, concision, and elimination
of redundancy. For example, Proselint detects the letter x used
in place of the multiplication symbol × (e.g., 1440 x 900),
misspecified p values resulting from data-analysis software that
truncates small numbers (e.g., p = 0.00), and colloquialisms that
obscure the mechanisms of science-based technology (e.g., "lie
detector test" for the polygraph machine, which measures arousal,
not lying per se).

A tool for language science

Linguistics is largely descriptivist, tending to describe language as
it is used rather than prescribe how it ought to be used [Gar16].
Errors are considered mostly in the context of language learning
(especially children’s) because those errors reveal the structure
of the language-learning mechanism (see, e.g., overregularization
by young English speakers [MPU+92]). Though linting prose is
implicitly prescriptivist because its detection of norm violations
presupposes the existence of norms [Gar16], even so, language
science can benefit from Proselint’s advice without making norma-
tive claims. Linguists can use Proselint to detect patterns in usage
and style in corpora of written text, to identify authors by their
usage, and to enrich standard Natural Language Processing (NLP)
techniques with features beyond word frequencies and syntactic
structures [BKL09].

The advice

Proselint is built around advice derived from works by Bryan
Garner, David Foster Wallace, Chuck Palahniuk, Steve Pinker,
Mary Norris, Mark Twain, Elmore Leonard, George Orwell,
Matthew Butterick, William Strunk, E.B. White, Philip Corbett,

1. Proselint differs from a spell-checker in that its recommendations do not
specifically counter spelling errors, but rather errors of style and usage. The two
occasionally overlap, e.g. in the malapropism "attacking your voracity", where
it is not that "voracity" is a spelling error per se but that the appropriate word
is its phonetic neighbor "veracity". Compare this to "attacking your verqcity",
almost certainly a typo.

Ernest Gowers, and the editorial staff of the world’s finest literary
magazines and newspapers, among others.2

Our standard for including a new rule is that it should be
accompanied by a citation to a recognized expert on language
usage who has defined the rule clearly. Though we have no explicit
criteria for what makes a citation appropriate, in practice we have
given greater weight to works from well-established publishers
and those widely cited as reliable sources of advice. The choice of
which rules to implement is ultimately a question of feasibility of
implementation, utility, and preference. Our guiding preference
is to make Proselint widely useful by default. In the case of
unresolved conflicts between advice from multiple sources, our
default is to exclude all forms of the advice because we find it
unreasonable to hold users to a higher standard than we hold the
experts, at least one of whom supports the user’s choice. Because
we aim for excellent defaults without hampering customization,
Proselint can be extended by adding new rules or filtered by
excluding existing rules through a configuration file.

Tables 1 and 2 list much of the advice that Proselint currently
implements. That advice is organized into modules.

Rule modules

Proselint’s rules are organized into modules that reflect the
structure of usage guides [Gar16]. For example, the terms
module encourages expressive vocabulary by flagging use of
unidiomatic and generic terms. The module has submodules
for categories of terms found as entries in usage guides. The
submodule terms.venery pertains to venery terms, which
arose from hunting tradition and describe groups of animals of
a particular species — a pride of lions or an unkindness of ravens.
Similarly, the submodule terms.denizen_labels pertains
to demonyms, which are used to describe people from a particular
place — New Yorkers (New York), Mancunians (Manchester), or
Novocastrians (Newcastle).

Organizing rules into modules is useful for two reasons. First,
it allows for a logical grouping of similar rules, which often
require similar computational machinery to implement. Second,
it allows users to include and exclude rules at a higher level of
abstraction than the individual word or phrase.

Converting a rule to code: rule templates

Suppose a developer wanted to implement the following entry
from Garner’s Modern English Usage as a rule in Proselint:

decimate. Originally this word meant “to kill one in
every ten,” but this etymological sense, because it’s
so uncommon, has been abandoned except in histori-
cal contexts. Now decimate generally means “to cause
great loss of life; to destroy a large part of.” ... In
fact, though, the word might justifiably be considered
a SKUNKED TERM. Whether you stick to the original
one-in-ten meaning or use the extended sense, the word
is infected with ambiguity. And some of your readers
will probably be puzzled or bothered. [Gar16]

In general, a rule’s implementation need only be a function
that takes in a string of text, applies logic identifying whether the
rule has been violated, and then returns a value identifying the
violation in the correct format. Weak requirements and Python’s

2. Proselint has not been endorsed by these individuals; we have merely
implemented their words in code.
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ID Description

airlinese.misc Avoiding jargon of the airline industry
annotations.misc Catching annotations left in the text
archaism.misc Avoiding archaic forms
cliches.misc Avoiding clichés
consistency.spacing Consistent sentence spacing
consistency.spelling Consistent spelling
corporate_speak.misc Avoiding corporate buzzwords
cursing.filth Avoiding cursing
cursing.nfl Avoiding words banned by the NFL
dates_times.am_pm Using the right form for time
dates_times.dates Stylish formatting of dates
hedging.misc Not hedging
hyperbole.misc Not being hyperbolic
jargon.misc Avoiding miscellaneous jargon
lexical_illusions.misc Avoiding lexical illusions
links.broken Linking only to existing sites
malapropisms.misc Avoiding common malapropisms
misc.apologizing Being confident
misc.back_formations Avoiding needless backformations
misc.bureaucratese Avoiding bureaucratese
misc.but Avoiding starting a par. with "But..."
misc.capitalization Capitalizing correctly
misc.chatspeak Avoiding lolling and other chatspeak
misc.commercialese Avoiding commerical jargon
misc.currency Avoiding redundant currency symbols
misc.debased Avoiding debased language
misc.false_plurals Avoiding false plurals
misc.illogic Avoiding illogical forms
misc.inferior_superior Superior to, not than
misc.latin Avoiding overuse of Latin phrases
misc.many_a Many a singular
misc.metaconcepts Avoiding overuse of metaconcepts
misc.narcisissm Talking about the subject, not its study
misc.phrasal_adjectives Hyphenating phrasal adjectives
misc.preferred_forms Miscellaneous preferred forms

TABLE 1
What Proselint checks.

expressiveness allow developers to build detectors for all com-
putable usage and style requirements, but provide little guidance
for implementing new rules.

To provide guidance for implementing new rules, we
wrote helper functions that follow the protocol and provide
some common logical forms of rules. These include check-
ing for the existence of a given word, phrase, or pattern
(existence_check()); for intra-document consistency in us-
age (consistency_check()); and for use of a word’s pre-
ferred form (preferred_forms_check()).

The entry on decimate bans a word and so can be implemented
using the existence_check template:

1 def check_for_decimate(text):
2 err = "skunked_terms.decimate"
3 msg = (u"’{}’ is a skunked term -- impossible to
4 "use without someone taking issue. Find"
5 "another way to say it")
6 regex = "decimat(?:e|es|ed|ing)?"
7 return existence_check(
8 text, [regex], err, msg, join=True)

First the function defines an error code, an error message, and a

ID Description

misc.pretension Avoiding being pretentious
misc.professions Calling jobs by the right name
misc.punctuation Using punctuation assiduously
misc.scare_quotes Using scare quotes only when needed
misc.suddenly Avoiding the word suddenly
misc.waxed Waxing poetic
misc.whence Using "whence"
mixed_metaphors.misc Not mixing metaphors
mondegreens.misc Avoiding mondegreens
needless_variants.misc Using the preferred form
nonwords.misc Avoid using nonwords
oxymorons.misc Avoiding oxymorons
psychology.misc Avoiding misused psychological terms
redundancy.misc Avoid redundancy & saying things twice
redundancy.ras_syndrome Avoiding RAS syndrome
skunked_terms.misc Avoid using skunked terms
spelling.able_atable -able vs. -atable
spelling.able_ible -able vs. -ible
spelling.athletes Spelling of athlete names
spelling.em_im_en_in -em vs. -im and -en vs. -in
spelling.er_or -er vs. -or
spelling.in_un in- vs. un-
spelling.misc Spelling words corectly
security.credit_card Keeping credit card numbers secret
security.password Keeping passwords secret
sexism.misc Avoiding sexist language
terms.animal_adjectives Animal adjectives
terms.denizen_labels Calling denizens by the right name
terms.eponymous_adjs Calling people by the right name
terms.venery Call groups of animals by the right name
typography.diacritics Using dïacríticâl marks
typography.exclamation Avoiding overuse of exclamation
typography.symbols Using the right symbols
uncomparables.misc Not comparing uncomparables
weasel_words.misc Avoiding weasel words

TABLE 2
What Proselint checks (cont.).

regular expression that matches the word decimate in its various
forms. Then it applies the existence check.

Using Proselint

Installation

Proselint is available on the Python Package Index and can be
installed using pip:

pip install proselint

Alternatively, developers can retrieve the Git repository from
GitHub (https://github.com/amperser/Proselint) and then install
the software using setuptools:

pip install --editable

Command-line utility

Proselint is a command-line utility that reads in a text file:

proselint text.md

https://github.com/amperser/Proselint
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Running this command prints a list of suggestions to stdout, one
per line. The GNU Error Message Formatting standard [S+16] is
the basis for the format of displaying these suggestions. We further
require that the error code (here, the check_name) is separated
from the error message by a space. Because this format is used
by many linters, we call it the Standard Linting Format (SLF). An
SLF-formatted suggestion has the form:

text.md:<line>:<column>: <check_name> <message>

For example,

text.md:0:10: skunked_terms.misc ’decimate’ is ...
a skunked term -- impossible to use without ...
someone taking issue. Find another way to say it."

This message suggests that, at column 10 of line 0, the module
skunked_terms.misc detected the presence of the skunked
term decimate. The command-line utility can instead print the list
of suggestions in JSON through the --json flag. In this case, the
output is considerably richer:

{
// The check originating this suggestion
"check": "uncomparables.misc",

// The line where the error starts
"line": 1,

//The column where the error starts
"column": 1,

// Index in the text where the error starts
"start": 1,

// the index in the text where the error ends
"end": 18,

// start - end
"extent": 17,

// Message describing the advice
"message": "Comparison of an uncomparable: ...
’very unique\n’ is not comparable.",

// Possible replacements
"replacements": null,

// Importance("suggestion", "warning", "error")
"severity": "warning"

}

Text editor plugins

Proselint is available as a plugin for popular text editors, including
Emacs, vim, Sublime Text, and Atom. Embedding linters within
the tools that people already use to write removes a barrier to
adoption the linter and thereby promotes adoption of best practices
in writing [Was90].

Proselint’s approach

In the following sections, we describe Proselint’s approach and its
greatest points of departure from previous attempts to lint prose.
As part of this analysis, we curated a list of known tools for
automated language checking. The dataset contains the name of
each tool, a link to its website, and data about its basic features,
including languages and licenses (link). The tools are varied in
their approaches and coverage, but typically focus on grammar
versus usage and style; are unsystematic in choosing sources of

advice; or have been abandoned. In general, we regard the tools as
being imprecise, incomplete, and inaccessible:

Imprecise. Even the best software-based tools for editing are
riddled with false positives. We evaluated many of the tools in
our dataset on an earlier version of the corpus. Proselint’s false
discovery rate of 1 false positive to 10 true positives was 20×
better than the next best tool, Microsoft Word, which had a false
discovery rate of 2 false positives to 1 true positive.

Incomplete. All software-based tools for editing are incom-
plete; not one frees our collective knowledge about best practices
in writing from its bindings. Completion is likely an unattain-
able goal, which inspires Proselint’s open-source, community-
participation model.

Inaccessible. Many existing tools are inaccessible because
they cost money, are closed source, or are inextensible. Thus we
designed Proselint to be free, open source, and extensible.

What to check: usage, not grammar

Proselint does not detect grammatical errors because it is both too
easy and too hard:

Detecting grammatical errors is too easy in the sense that most
native speakers can readily identify and easily fix them. The errors
that leave the greatest negative impression in the reader’s mind are
often glaring to native speaker. On the other hand, more subtle
errors, such as a disagreement in number set apart by a long string
of intermediary text, escapes even a native speaker’s notice.

Detecting grammatical errors is too hard in the sense that
its most general form is AI-hard, requiring at least human-level
artificial intelligence and a native speaker’s ear [Yam13]. Modern
NLP techniques that detect grammatical errors are unavoidably
statistical and produce many false positives [BKL09] [LCGT10].
This is in part because syntax parsers used in grammatical error
detection must tolerate grammatical errors, a problem that is
compounded in writing by English-language learners [LCGT10].
Once a grammatical error has been detected, determining the
correct replacement hinges on the intended meaning. Occasionally,
the intended meaning will determine even whether a grammatical
error is present: e.g., is "Man bites dog" a headline about canine
aggression, or are the subject and object swapped in error? In the
general case, the problem of determining the intended meaning of
a sentence is AI-hard [Yam13].

Instead of focusing on grammatical errors, Proselint addresses
errors of usage and style.

Published expertise as primary sources

People have such strong shared intuitions about grammar that a
common experimental measure in linguistics is the grammaticality
of a sentence as measured by the intuitions of native speakers
[Kel00]. But style and usage inspire a multitude of intuitions.
Authors of usage guides have done much of the work of hashing
out these conflicting intuitions to arrive at sensible everyday
advice [Gar16]. Proselint thus defers to these experts, and in doing
so embodies our collective understanding about the craft of writing
with style.

Levels of difficulty

In a loose analogy to Chomsky’s hierarchy of formal grammars
[Cho56], usage errors vary in the difficulty of detecting and
correcting them:

1. AI-hard

https://github.com/amperser/proselint/blob/master/research/comparison/tools.csv
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2. NLP, beyond state-of-the-art
3. NLP, state-of-the-art
4. Syntax-dependent rules
5. Regular expressions
6. One-to-one replacement rules.

At the lowest levels of the hierarchy are usage errors that a
linter can reliably detect and correct through one-to-one replace-
ment rules. At the highest levels are usage errors whose detection
and correction are such hard computational problems that it would
require at least human-level intelligence to solve in the general
case, if a solution is possible at all [Yam13]. Consider usage
errors pertaining to placement of the word only, which depends
on the intended meaning. For example, in "John hit Peter in
his only nose", is the only misplaced or is it unusual that Peter
has only one nose? Usage errors at this highest level of the
hierarchy are hard to detect without introducing false positives and
determining the correct replacement requires understanding the
intended meaning. Development of Proselint begins at the lowest
levels of the hierarchy and builds upwards.

Signal detection theory and the lintscore

Any new tool, for language or otherwise, faces a challenge to its
adoption: it must demonstrate that the utility the tool provides
outweighs the cost of learning to use it [Was90]. The utility of a
prose linter comes in part from its ability to detect usage and style
errors. Each issue flagged might be an error, but it might instead
be a false positive. Let T be the number of true errors and F be
the number of false positives, thus making T +F the total number
of flags raised by the tool. An approach that attempts to maximize
T by flagging many errors without adequately considering F will
identify many genuine errors, but raise so many false positives that
writers must evaluate each proposed error.

With Proselint, we aim for a tool precise enough that users
can adopt its recommendations unquestioningly and still come out
ahead. To achieve this, we penalize the number of false positives
F by evaluating Proselint in terms of its empirical lintscore. The
lintscore gives one point for every true positive T and penalizes
on the basis of the false discovery rate α = F

T+F . The lintscore is
given by

l(T,F ;k) = T (1−α)k,

where the parameter :math:kgeq1‘ controls the strength of the 1−
α penalty. Notably, the lintscore does not reflect the number of true
and false negatives; we reason that it is more important to be quiet
and authoritative than to be loud and risk being untrustworthy (cf.
the metrics discussed in [CDIT12]).

The lintscore can be computed exactly if an evaluator can
classify each error flagged by the linter as a true or false positive.
However, many corpora are large enough to preclude this kind
of exhaustive assessment. In these cases, the lintscore can be
estimated from the total number of issues flagged and an estimate
of the false discovery rate.

Note that the lintscore is not a readability metric because it
evaluates linters, not prose. Given a set of documents, signal detec-
tion theory makes it possible to estimate a linters’ trustworthiness
through the lintscore.

Speed via Memoization

Proselint must be efficient for use as a real-time linter. Avoiding
redundant computation by storing the results of expensive function

calls ("memoization") improves efficiency. Because most para-
graphs do not change from moment to moment during editing of a
sizable document, memoizing Proselint’s output over paragraphs
and recomputing only when a paragraph has changed (otherwise
returning the memoized result) reduces the total amount of com-
putation and thus improves the running time.

A proof of concept

As a proof of concept, we used Proselint to make contributions
to several documents. These include the White House’s Federal
Source Code Policy; The Open Logic Project textbook on ad-
vanced logic; Infoactive’s Data + Design book; and many of the
other papers submitted to SciPy 2016. In addition, we evaluated
Proselint’s false discovery rate on a corpus of essays from well-
edited magazines such as Harper’s Magazine, The New Yorker,
and The Atlantic (full list). We then measured the lintscore.
Because the essays included in our corpus were edited by a team
of experts, we expect Proselint to remain mostly silent. By design,
Proselint should comment only on the rare error that slips through
unnoticed by the editors or, more commonly, on finer points of
usage, about which the experts sometimes disagree. When run
over v0.1.0 of our corpus, we achieved a lintscore (k = 2) of 98.8.

Future development and possible applications

We see a number of directions for future development of Proselint
that improve the tool and its utility for science:

Context-sensitive rule application and machine learning

Many rules apply better to some kinds of documents than to others.
For example, in most cases extendable is preferable to extensible,
but in software development the opposite is true. Applying these
rules without consideration of the context will systematically
introduce false positives.

Silencing rules that are predicted to be irrelevant because
of the context allows a greater variety of rules to be included
without introducing false positives. Consider the advice that, when
specifying a decade, an apostrophe is unnecessary: Eisenhower
was president in the 50s, not the 50’s. However, not all instances
of 50’s are problematic: one can validly write 50’s manager to
refer to 50’s manager without making a usage error about decades.
To account for this context sensitivity, Proselint detects whether a
document’s topic is 50 Cent, identifying 50’s as a usage error only
when the topic is not detected.

The 50 Cent topic detector was hand-crafted in the fashion of
expert knowledge systems [Jac86]. Machine-learning techniques
for identifying the topic of a document (e.g., topic models [BL09])
can generalize this ability and will be crucial to safely growing
Proselint’s coverage of usage errors. Once incorporated, extending
this to hierarchical nonparametric topic models will enable docu-
ment sub-structure to be taken into account as a form of context
[BGJ10].

Evaluating linters by testing on multiple corpora

In our internal evaluations of Proselint, we calculate the empirical
lintscore manually on a corpus of professionally edited documents,
which presumably have few errors. This efficiently alerts us to
false positives that are introduced by new rules, but tells us little
about its performance in other settings. A major improvement
would be to compute the lintscore on corpora such as student
essays, which are more likely to have true positives and will thus

https://github.com/WhiteHouse/source-code-policy
https://github.com/WhiteHouse/source-code-policy
https://github.com/OpenLogicProject/OpenLogic
https://github.com/infoactive/data-design
https://github.com/scipy-conference/scipy_proceedings/tree/2016
https://github.com/amperser/proselint/tree/master/corpora
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improve our estimates of Proselint’s positive utility for a more
typical user.

Corpora of documents drawn from different content-based
categories (technical papers, scientific articles, software documen-
tation, fiction, journalism, etc.) will help in evaluating Proselint’s
performance in evaluating prose from different fields. Certain rules
may be relevant to some fields more than others and testing with
diverse corpora will ensure that Proselint can be used by a diverse
range of individuals. Furthermore, this will allow us to learn which
rule sets are relevant in which contexts.

Observing how a document is modified in accordance with
Proselint’s suggestions affords new opportunities for evaluation of
Proselint, tracking the acceptance of its advice and any effects on
the rate of new errors introduced between drafts.

File formats and markup languages for documents (e.g, re-
StructuredText, LaTeX, Markdown, HTML, etc.) often rely on
syntactical conventions that Proselint falsely identifies as errors.
Similar concerns arise for documentation written as docstrings or
code comments in a variety of programming languages. Corpora
focusing on individual formats and languages will aid in identi-
fying and filtering these errors, enabling development targeted at
addressing these problems.

Stylometrics and machine learning

The field of stylometrics has extensively studied the problem of
identifying the authors of documents [ZLCH06]. Many of these
studies focus on the relative frequencies with which individual
words are used, especially function words. For example, Mosteller
& Wallace inferred the authorship of twelve essays in the Federal-
ist Papers on the basis of the frequency of common function words
such as to and by [MW63]. Proselint provides new measures that
could be used to improve this kind of stylometric analysis.

Several applications follow from authorship identification:
One application uses Proselint to detect ghost-written docu-

ments, which could also have benefits for identifying academic
dishonesty (e.g., purchasing and selling of ghost-written essays).
This application assumes that there is a ground-truth corpus with
samples of the author’s writing. On the other hand, someone
may be able to use Proselint to escape identification by avoiding
features that distinguish the author’s writing from those of others.

A second application inverts and generalizes the process of
identifying authors by selectively introducing, changing, or remov-
ing usage choices to obfuscate or encrypt messages. With some
modifications and a protocol for establishing usage-based keys,
Proselint could become a system for designing content-aware
steganographic systems that convey hidden messages through their
choice of words and style [BK06]. Encryption would require
modifying the Proselint infrastructure to identify when more than
one acceptable choice exists.

The errors Proselint can detect are rare compared to the
typical linguistic features used in stylometry [ZLCH06], [MW63],
[Rud97]. Sparse measures pose difficulty for methods like those
in Mosteller & Wallace (1963) [MW63]. Machine-learning tech-
niques for inferring identity from sparse data will thus be partic-
ularly applicable. Furthermore, this endeavor will benefit from an
approach that considers the cross product of authors and topics
[RZGSS04].

Automated usage and style metrics

Readability metrics such as the Flesch–Kincaid Grade Level and
the Gunning fog index do not capture usage and style because they

measure reading ease rather than conventionality [Fle48]. Proselint
could be used to create automated metrics for the consistency and
stylishness of prose. Such metrics may also find use as part of
automated essay-grading tools [VNC03].

Tracking historical trends in usage

An application of Proselint as a tool for language science is in
tracking historical trends in usage. Corpora such as Google Books
have been useful for measuring changes in the prevalence of words
and phrases over several hundred years [MSA+11]. Our tool can
be used in a similar way because it provides a feature set for
usage. For example, one might study the prevalence of airlinese
(including, e.g., use of "momentarily" to mean "in a moment", as
in the phrase "we are taking off momentarily") and its alignment
with the rise of that industry.

An unsolved problem: foreign languages

We have no immediate plans for extending Proselint to other
languages. This is in part because building a linter for style and
usage errors in both American and British English is challenging
enough for a native speaker, and in part because attempting to
build a linter for languages in which the creators lack fluency
would seem to be an exercise in folly. An open problem is how to
extend Proselint to become a universal linter for prose.

Missing corpora

To evaluate Proselint’s false discovery rate, we built a corpus of
text from well-edited magazines believed to contain low rates of
usage errors. In the course of assembling this corpus, we discov-
ered a lack of annotated corpora that provide false discovery rates
for style and usage violations3. The Proselint testing framework is
an excellent opportunity to develop such a corpus. Unfortunately,
because our current corpus derives from copyrighted work, it
cannot be released as part of open-source software. Developing
an open-source corpus of style and usage errors will be necessary
if these tools are to be made available for NLP research outside
internal testing of Proselint.

A critique of normativity in prose styling, and a response

One critique of Proselint [hac] is a concern that introducing
any kind of linter-like process to the act of writing diminishes
the ability for authors to express themselves creatively. These
arguments suggest that authors will find themselves limited by
the linter’s rules and that, as a result, this will have a shaping or
homogenizing effect on language.

In response to this critique, we note that our goal is not to
homogenize text for the sake of uniformity (though perhaps there
is value there, too), but rather to detect instances of language use
that have been identified by experts as problematic. Creative use
of language is not flagged unless it has been previously identified
as problematic, furthering our aim of a quiet and authoritative
tool. And even an author who intentionally flouts conventions for
creative reasons will benefit from a thorough understanding of
them [Bri04].

3. Editor [edi] has built a corpus which compares the performance of various
grammar checkers. Their corpus contains "real-world examples of grammatical
mistakes and stylistic problems taken from published sources". A corpus made
of errors will maximize true positives, but misestimate false discovery rates in
real-world documents. Their corpus is not publicly available, and they do not
provide a standard format for describing corpora annotated with false positives
and negatives.
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Furthermore, technical writing of all kinds is often char-
acterized by consistent language use and precise terminology.
Even an author who views all writing as inextricably creative
must sometimes direct that creativity toward a particular aim.
Software documentation, technical manuals, and legal briefs, and
pedagogical writing all feature this need and are improved when
the author follows the conventions of a field.

Lastly, science demands consistency to promote clarity and
replication. At the same time, scientists are in the business of
expressing ideas that challenge even the greatest of minds, and
their success depends on conveying those ideas to people who
then use the ideas in their own work. When an idea is hard to
grasp, simplicity and clarity will further its proliferation.

Contributing to Proselint

The primary avenue for contributing to Proselint is by contributing
code to its GitHub repository. In particular, we have developed an
extensive set of Issues that range from trivial-to-fix bugs to lofty
features whose addition are entire research projects in their own
right. To merit inclusion in Proselint, contributed rules should be
accompanied by a citation to a recognized expert on language
usage who has defined the rule clearly. This is not because
language experts are the only arbiters of language usage, but
because our goal is explicitly to aggregate best practices as put
forth by the experts.

A secondary avenue for contributing to Proselint is through
discovery of false positives: instances where Proselint flags well-
formed idiomatic prose as containing a usage error. In this way,
people with expertise in editing, language, and quality assurance
can make a valuable contribution that directly improves the metric
we use to gauge success.
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