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Abstract	18	

Human	 cognition	 and	 behavior	 result	 from	 complex	 interactions	 between	 cultural	19	

and	biological	evolution,	obscuring	their	origins.	Existing	approaches	to	solving	this	20	

problem	 use	 theoretical	 models	 to	 generate	 hypotheses	 that	 are	 then	 tested	 in	21	

laboratory	 experiments.	 However,	 theoretical	 models	 make	 strong	 simplifying	22	

assumptions	 about	 the	 nature	 of	 human	 minds	 in	 order	 to	 be	 tractable,	 and	23	

laboratory	 experiments	 do	 not	 reveal	 evolutionary	 dynamics.	 Here,	 we	 overcome	24	

these	 limitations	 by	 inserting	 human	 participants	 into	 large-scale	 evolutionary	25	

simulations,	assigning	them	artificial	genes	that	modify	the	tasks	they	are	asked	to	26	

perform.	In	this	way,	cognitive	capacities	can	be	masked,	enhanced,	and	transformed	27	

as	 if	 through	 biological	 evolution.	 We	 use	 this	 method	 to	 replicate	 and	 extend	28	

theoretical	results	concerning	the	evolution	of	social	learning,	the	impact	of	learning	29	

on	genetic	evolution,	and	the	co-evolutionary	dynamics	of	learning	and	memory.		30	

Preserved	 remains	 provide	 only	 limited	 information	 about	 the	 evolution	 of	 human	31	

behavior	 and	 cognition.	 As	 a	 result,	 such	 questions	 are	 typically	 addressed	 indirectly	 by	32	

combining	 theoretical	 evolutionary	 models	 with	 laboratory	 experiments.	 The	 former	33	

generate	predictions	and	identify	candidate	behaviors;	the	latter	compare	human	behavior	34	

with	 these	predictions.	For	example,	 theoretical	models	of	 social	 learning	strategies	have	35	

received	extensive	empirical	verification	(1–3).	However,	each	approach	has	its	limitations.	36	

Although	 theoretical	 evolutionary	 models	 can	 expose	 the	 conditions	 under	 which	 a	37	

candidate	 trait	 will	 evolve,	 their	 creation	 requires	 simplifying	 assumptions	 about	 the	38	

behavior	 or	 cognitive	 ability	 in	 question.	 Thus,	 although	 they	 illustrate	 the	 evolutionary	39	
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consequences	of	an	assumed	trait,	their	ecological	validity	in	the	specific	context	of	human	40	

evolution	 remains	 unclear.	 Empirical	 studies,	 unlike	 theoretical	 models,	 examine	 the	41	

behavior	of	organisms	directly	and	thus	require	 fewer	assumptions	about	 their	behavior.	42	

But	 they	 suffer	 from	a	different	 limitation:	 they	provide	only	 a	 static	 snapshot	of	human	43	

behavior	or	cognition,	with	no	means	to	study	evolutionary	dynamics.		44	

	 Here,	we	combine	the	strengths	of	theoretical	models	and	empirical	studies	through	45	

large-scale	online	evolutionary	simulations.	Our	technique	assigns	thousands	of	46	

participants	artificial	genes	that	influence	the	structure	of	the	task	they	are	asked	to	47	

perform,	inserts	them	into	an	evolving	population,	and	then	uses	their	behavior	to	48	

determine	their	fitness	and	hence	simulated	reproductive	success	(49	

	50	

Figure 1).	Use	of	human	participants	rather	than	mathematical	abstractions	or	computer-51	

based	agents	is	advantageous	because	we	need	make	no	simplifying	assumptions	about	the	52	

nature	of	the	cognitive	processes	involved.	Because	modern	humans	already	possess	the	53	

traits	we	seek	to	explain,	it	is	possible	to	construct	a	mapping	from	artificial	genes	to	54	

experimental	tasks	that	masks	participants’	abilities	(e.g.,	using	desaturated	images	to	55	

mask	color	vision)	and	then	explore	the	circumstances	under	which	selection	unmasks	56	

those	abilities.	57	
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	58	

	 In	 what	 follows,	 we	 use	 this	 method	 to	 replicate	 and	 extend	 theoretical	 results	59	

concerning	 the	 evolution	 of	 social	 learning	 in	 a	 changing	 environment,	 the	 impact	 of	60	

learning	on	genetic	evolution,	and	the	co-evolutionary	dynamics	of	 learning	and	memory.	61	

In	each	case,	we	demonstrate	that	theoretical	results	hold	in	evolutionary	simulations	with	62	

human	agents	and	 that	nuances	of	human	behavior	 lead	 to	phenomena	unanticipated	by	63	

theory.	64	

	 Although	humans	are	adept	inventors,	we	are	perhaps	best	defined	by	our	ability	to	65	

learn	 from	others	 (4).	 Social	 learning	enables	 innovations	 to	 accumulate	 in	 a	population,	66	

leading	to	technologies	that	go	beyond	what	any	one	person	could	create.	Although	culture	67	

might	 appear	 to	 be	 inherently	 advantageous,	 early	 theoretical	 work	 found	 that	 as	 the	68	

frequency	 of	 social	 learning	 increases	 in	 a	 population	 its	 fitness	 declines	 until,	 at	69	

equilibrium,	average	 fitness	 is	no	better	 than	 in	a	population	of	asocial	 learners	 (5).	This	70	

result,	 known	 as	 Rogers’	 Paradox,	 arises	 because	 social	 learning	 recycles	 existing	71	

information	and	thus	cannot	track	environmental	change.	72	

	 To	verify	that	our	approach	reproduces	well-established	evolutionary	dynamics,	we	73	

 

Figure 1. Three approaches to studying the evolution of human cognition. (A) Theoretical evolutionary models 
such as agent-based modeling simulate artificial agents embedded in an environment, making strong 
assumptions about their psychology. (B) Laboratory experiments examine the behavior of individual human 
participants. (C) Our approach embeds human participants, endowed with artificial genes, into large-scale online 
simulations of evolutionary dynamics orchestrated by a computer. 
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first	sought	to	recreate	Rogers’	Paradox.	In	the	experiment,	1600	participants	took	part	in	74	

125	 parallel	 simulations,	 each	 involving	 40	 generations	 of	 40	 agents.	 Within	 each	75	

simulation,	participants	played	the	role	of	a	single	agent	and,	according	to	an	artificial	gene	76	

assigned	 to	 them,	were	 either	 an	 asocial	 or	 a	 social	 learner.	 Asocial	 learners	 viewed	 an	77	

array	of	blue	and	yellow	dots	for	1s	and	decided	which	color	was	more	numerous	(Error!	78	

Reference	source	not	found.A).	Social	 learners	made	the	same	decision,	but	did	not	see	79	

the	dots	directly,	 instead	observing	the	decision	of	a	single	agent	selected	randomly	from	80	

the	previous	generation	(Error!	Reference	source	not	found.B).	The	difficulty	of	the	task	81	

varied	across	simulations	(3	levels:	easy,	moderate,	and	hard,	see	SI).	Every	10	generations,	82	

and	 unbeknownst	 to	 participants,	 the	 environment	 changed	 state:	 all	 the	 dots	 switched	83	

colors.	 Accordingly,	 the	 information	 acquired	 by	 social	 learners	 could	 be	 outdated.	 The	84	

fitness	of	each	agent	was	a	function	of	whether	their	decision	matched	the	current	state	of	85	

the	environment,	with	asocial	 learners	paying	a	cost	 to	observe	 the	current	state.	Agents	86	

inherited	 their	 artificial	 gene	 from	 an	 agent	 in	 the	 previous	 generation,	 chosen	 with	87	

probability	proportional	to	fitness.	Inheritance	was	subject	to	mutation	with	a	10%	chance	88	

that	 an	 agent’s	 strategy	 would	 differ	 from	 that	 of	 their	 parent.	 The	 first	 generation	89	

consisted	 only	 of	 asocial	 learners. 90	
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 91	

Figure 2. The evolution of social learning in a changing environment. (A) The perceptual task faced by 92	
human participants when agents learn asocially. On some trials, participants judged whether a display 93	
contained more blue or yellow dots. (B) Social information. On some trials, participants were told the 94	
decision of an individual from the previous generation. (C) Contrariness. Knowledge of the possibility of 95	
environmental change increased the probability that a social learner adopted the opposite decision of 96	
their demonstrator: without knowledge: 3.7% [3.3%, 4.2%], with knowledge: 33% [32%, 34%]. Despite the 97	
genuine possibility of environmental change, this decreased the frequency of social learning. When social 98	
learners could observe the entire previous generation, contrariness (i.e., adopting the minority opinion) 99	
was less prevalent: 8.3% [7.8%, 8.8%]. (D) During periods of environmental stability (within white or grey 100	
regions), the frequency of social learning increased, but following environmental change (the border 101	
between white and grey regions) it decreased. The relative resilience of social learning when the learning 102	
problem was hard is due to the low performance of the asocial learners (asocial performance: easy: 98% 103	
[98%, 98%], moderate: 84% [84%, 85%], hard: 66% [65%, 67%]), which reduces the fitness of asocial 104	
learners and, by increasing the amount of inaccurate information in the population prior to change, 105	
increases the accuracy of the information after environmental change relative to easier conditions. (E) 106	
Access to the decisions of the entire previous generation increased the peak frequency of social learning. 107	
However, it also increased the impact of environmental change. 108	

	 Replicating	 previous	 theoretical	 results,	 we	 found	 that	 social	 learning	 increased	109	

during	periods	of	stability,	and	decreased	following	environmental	change	(Figure	2D).	The	110	

average	frequency	of	social	learners	after	10	generations	of	stability	was	70%	[69%,	72%]	111	

(median	and	95%	credible	 interval),	dropping	 to	61%	[60%,	63%]	 two	generations	after	112	

environmental	 change.	 The	 difficulty	 of	 the	 learning	 problem	 affects	 the	 evolutionary	113	

dynamics:	 harder	 learning	 problems	 led	 to	 higher	 average	 frequencies	 of	 social	 learning	114	
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(hard:	 74%	 [72%,	 76%],	 moderate:	 65%	 [62%,	 67%],	 easy:	 60%	 [58%,	 62%],	 hard-115	

moderate:	 9%	 [7%,	 12%],	 moderate–easy:	 5%	 [2%,	 7%])	 and	 smaller	 drops	 in	 social	116	

learning	 in	 response	 to	 environmental	 change	 (easy:	 16%	 [14%,	 19%],	 moderate:	 12%	117	

[10%,	14%],	hard:	3%	[1%,	5%]).	118	

	 Social	learning	strategies	(1)	such	as	copying	the	decisions	of	successful	individuals	119	

or	disproportionately	adopting	the	majority	decision	(“conformist	transmission”	(3)),	have	120	

been	identified	as	possible	solutions	to	Rogers’	Paradox	because	they	increase	the	efficacy	121	

of	 social	 learning.	 However,	 these	 strategies	 can	 also	 be	 deleterious.	 Conformist	122	

transmission,	 for	 example,	 is	 particularly	 harmful	 after	 environmental	 change	 because	 it	123	

prevents	the	spread	of	new	ideas.	Humans	engage	in	conformist	transmission	(2),	but	there	124	

is	some	evidence	they	adjust	their	social	learning	to	account	for	environmental	change	(6).	125	

Accordingly,	we	explored	the	effect	of	environmental	change	on	the	evolutionary	dynamics	126	

of	 social	 learning	 when	 the	 social	 context	 is	 enriched	 by	 informing	 participants	 of	 the	127	

decisions	 of	 multiple	 other	 individuals,	 thus	 allowing	 more	 complex	 responses	 to	128	

consensus,	such	as	conformist	transmission.	We	recruited	1600	participants	to	take	part	in	129	

a	 further	 89	 repeat	 simulations.	 All	 simulations	 were	 set	 to	 moderate	 difficulty	 and	130	

participants	 were	 informed	 of	 the	 environmental	 change.	 Across	 repeats,	 we	 varied	131	

whether	 social	 learners	 saw	 the	 decisions	 of	 the	 entire	 previous	 generation	 (40	132	

individuals)	or	of	a	single	demonstrator	selected	at	random,	as	in	the	previous	experiment.	133	

If	people	can	tailor	their	social	learning	to	environmental	change,	it	will	have	less	impact	on	134	

the	frequency	of	social	learners.	135	



 

	 8	

	 We	 found	 that,	 although	 access	 to	 the	 entire	 previous	 generation’s	 decisions	136	

increased	the	frequency	of	social	learning	when	the	environment	was	stable,	it	exacerbated	137	

the	drop	in	social	 learning	that	follows	environmental	change	(single	demonstrator,	prior	138	

to	change:	47%,	[44%,	49%],	after	change:	34%,	[32%,	36%],	drop:	13%,	[11%,	15%],	40	139	

demonstrators,	prior	 to	change:	74%,	[72%,	76%],	after	change:	28%,	[26%,	30%],	drop:	140	

46%,	 [44%,	 47%]	 Figue	2E).	 This	 is	 because	when	participants	 could	 observe	 the	 entire	141	

previous	generation	 their	behavior	was	 consistent	with	 conformist	 transmission.	Despite	142	

this,	 there	 is	 some	 evidence	 that	 participants	 adjusted	 their	 behavior	 to	 the	 risk	 of	143	

environmental	change.	For	instance,	when	shown	only	a	single	demonstrator,	participants	144	

were	 more	 likely	 to	 be	 contrary	 when	 aware	 of	 the	 risk	 of	 environmental	 change	 than	145	

when	they	were	not	aware	(Figure	2C).	However,	the	level	of	contrariness	when	the	entire	146	

previous	 generation	 was	 available	 was	 consistently	 low	 (Figure	 2C).	 It	 seems	 the	147	

magnitude	of	the	social	information	overpowered	the	risk	of	environmental	change.	148	

	 At	the	end	of	the	19th	century,	James	Baldwin,	along	with	several	others,	proposed	a	149	

mechanism	 by	which	 learned	 behaviors	 interact	with	 genetic	 evolution	 (7,	8).	 Originally	150	

known	 as	 organic	 selection,	 and	 now	 more	 widely	 known	 as	 the	 Baldwin	Effect,	 it	 is	 a	151	

process	 by	 which	 learned	 behaviors	 are	 increasingly	 reliably	 acquired	 because	 of	152	

accumulated	 genetic	 change	 that	 favors	 their	 acquisition.	 The	 Baldwin	 Effect	 has	 been	153	

proposed	 as	 an	 important	 factor	 in	 human	 evolution,	 particularly	 in	 the	 evolution	 of	154	

language	(9,	10),	However,	it	has	yet	to	be	demonstrated	in	a	human	population.		155	

	 To	address	this,	we	carried	out	an	experiment	in	which	2400	participants	each	took	156	

part	 in	 18	 parallel	 simulations,	 each	 involving	 40	 generations	 of	 60	 agents.	Within	 each	157	

simulation,	 participants	 completed	 a	 category-learning	 task,	 categorizing	 8	 objects	 that	158	
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varied	along	three	binary	dimensions	into	one	of	two	categories	(based	on	(21)).	Following	159	

the	theoretical	model	in	(11),	agents	were	assigned	an	artificial	genome	with	8	genes,	each	160	

of	which	corresponded	to	one	of	the	objects	and	had	two	alleles:	a	neutral	allele	that	was	161	

inert,	and	a	beneficial	allele	 that	corrected	categorization	errors.	Fitness	was	determined	162	

by	 an	 agent’s	 accuracy	 in	 categorizing	 the	 objects.	 Agents	 reproduced	 sexually,	 with	 an	163	

agent’s	two	parents	chosen	from	the	previous	generation	with	probability	proportional	to	164	

fitness	and	with	each	gene	being	inherited	from	a	randomly	selected	parent.	Each	gene	had	165	

a	10%	chance	of	mutation,	which	produced	a	beneficial	allele	25%	of	the	time.		166	

	 Consistent	with	theoretical	analyses	of	the	Baldwin	Effect,	the	equilibrium	was	one	167	

in	which	agents	had	only	a	subset	of	beneficial	alleles	(average	beneficial	allele	frequency	168	

after	40	generations:	46%	[45%,	48%]).	This	 is	because	human	 learning	abilities	make	 it	169	

possible	to	perform	well	with	only	moderate	levels	of	genetic	assistance.	170	

	 Not	all	regularities	are	equally	easy	to	learn,	which	enables	us	to	explore	the	effect	171	

of	 learnability	 on	 the	 Baldwin	 Effect.	 Following	 (12),	 we	 considered	 three	 rule	 types	172	

(Error!	Reference	source	not	found.A-C):	Type	I	rules	were	easiest	to	learn	(99%	correct	173	

[99%,	99%]	unaided	by	genes),	Type	II	rules	were	slightly	harder	(89%	[88%,	89%]),	and	174	

Type	V	rules	were	harder	still	(85%	[84%,	85%]).	We	found	that	the	beneficial	allele	was	175	

more	 frequent	when	the	 learning	problem	was	more	difficult:	highest	with	a	Type	V	rule	176	

(60%	[59%,	63%]),	lower	with	Type	II	(0.42%	[0.40%,	0.44%]),	and	lower	still	with	Type	I	177	

(28%	[25%,	30%];Error!	Reference	source	not	found.D).		178	

	179	
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	 The	ability	to	access	human	learning	directly	allows	us	to	answer	another	question:	180	

What	will	the	Baldwin	effect	affect?	For	example,	if	the	human	capacity	for	language	were	181	

to	have	resulted	 from	such	a	process,	what	 form	of	genetic	 influence	might	we	expect	on	182	

the	development	of	language?	To	this	end,	we	tested	whether	the	genetic	response	can	be	183	

tailored	to	the	more	difficult	components	of	a	task.	In	particular,	note	that	Type	V	rules	can	184	

be	described	as	a	simple	rule	with	a	pair	of	exceptions;	 these	exceptions	are	particularly	185	

hard	to	learn	(non-exception	accuracy:	88%	[87%,	88%],	exception	accuracy:	73%,	[72%,	186	

74%]).	 Thus	 the	 difficulty	 of	 the	 task	 varied	 across	 the	 eight	 objects.	We	 found	 that	 the	187	

beneficial	allele	reached	higher	frequency	at	loci	corresponding	to	exception	objects	(76%	188	

[73%,	 79%])	 that	 at	 the	 other	 loci	 (55%	 [53%,	 57%],	 Error!	 Reference	 source	 not	189	

found.E).	Thus,	extrapolating	to	the	case	of	language,	we	might	expect	features	that	were	190	

most	problematic	for	human	learning	mechanisms	to	be	supported	genetically.	191	

 

Figure 3. Experimental evidence of the Baldwin Effect and its dependence on the difficult of learning. 
(A) A Type I rule, in which category membership depends only on a single dimension: “blue amoeba 
are good and green amoeba are bad.” (B) A Type II rule, in which category membership depends on 
two dimensions: “orange amoeba with green nuclei and blue amoeba with purple nuclei are good”. (C) 
A Type V rule, in which category membership depends on all three dimensions. Type V rules 
superficially resemble a Type I rule, but include two exceptions to the rule. In this case, the rule is 
“amoeba with purple nuclei are good, unless they are blue and don’t have spots, in that case the 
amoeba with a green nucleus is good”. (D) The Baldwin Effect depends on the difficulty of learning, 
with a greater genetic response in the context of harder learning problems. (E) . In the case of Type V 
rules, the beneficial allele was most prevalent at loci corresponding to exceptional amoeba (76% 
[73%, 79%] v. 55% [53%, 57%], difference = 21% [18%, 25%]). Again, this was driven by a difference 
in the learning ability of participants: accuracy for non-exception amoeba was 88% [87%, 88%], while 
for exception stimuli it was 73%, [72%, 74%] (difference = 15% [14%, 15%]) 
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There	is	a	broad	consensus	that	the	human	mind	represents	partially	independent	192	

faculties	that	co-evolved	(4,	13),	with	the	benefits	of	each	supporting	the	others.	Consider,	193	

for	example,	the	coevolution	of	memory	and	learning	in	the	context	of	sequential	decision-194	

making	 problems	 (14).	 Because	 greater	 investment	 in	 learning	 favored	 extending	 the	195	

temporal	 capacity	 to	 store	 information	 (i.e.,	 memory),	 which	 in	 turn	 favored	 further	196	

investment	in	learning,	memory	and	learning	co-evolved.	Environmental	change	disrupted	197	

this	co-evolution	by	reducing	the	utility	of	memory.	However,	the	more	aspects	of	cognition	198	

that	are	considered,	the	more	assumptions	are	required,	meaning	that	such	coevolutionary	199	

models	 represent	 a	 particular	 challenge	 for	 theoretical	 work.	 As	 such,	 using	 human	200	

participants	 in	 this	 context	 is	 particularly	 valuable.	Moreover,	more	 realistic	 versions	 of	201	

learning	and	memory	may	allow	the	co-evolution	to	occur	despite	a	changing	environment.	202	

Accordingly,	we	tested	whether	these	results	hold	true	for	human	behavior.	203	

		204	

	 We	 carried	 out	 three	 experiments,	 each	 with	 1600	 participants,	 simulating	 an	205	

 

Figure 4. Experimental co-evolution of learning and memory. (A) The experimental task. On each trial, 
participants visited a country (in the case shown, Sierra Leone) and searched for treasure hidden in 
one of 10 locations. Participants could check a number of locations before making a decision, as 
specified by their learning gene. Checking a location revealed whether the treasure was there (as 
indicated by the treasure chest) or not (the red “X”s). After checking locations, the participants made 
their final decision for that round. (B) When both learning and memory were permitted (solid lines), 
they co-evolved, with learning reaching a greater equilibrium value with memory than it did without it. 
(C) Reducing the constraints on behavior enabled learning and memory to co-evolve even when the 
environment was unstable. 	
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evolutionary	 process	 with	 40	 generations	 of	 40	 agents.	 Within	 each	 simulation,	206	

participants	played	20	trials	of	a	sequential	decision-making	task	 in	which	they	searched	207	

for	treasure	at	different	locations	within	a	country.	There	were	4	different	countries,	each	208	

with	10	locations,	only	one	of	which	produced	a	reward.	Agents	were	assigned	two	genes:	a	209	

learning	gene	that	controlled	the	number	of	locations	that	could	be	tested	before	making	a	210	

selection,	 and	 a	memory	 gene	 that	 controlled	 the	 elapsed	 time	 after	which	 a	 previously	211	

visited	country	would	become	unrecognizable	(it	would	change	to	a	new	country).	Fitness	212	

was	 a	 function	 of	 the	 accumulated	 reward	 and	 the	 costs	 associated	 with	 memory	 and	213	

learning.	Agents	inherited	their	genes	from	a	parent	in	the	previous	generation	chosen	with	214	

probability	 proportional	 to	 fitness.	 Each	 gene	mutated	with	 probability	 50%,	 causing	 its	215	

value	to	increase	or	decrease	by	1.	216	

	 In	 the	 first	 two	experiments,	we	verified	 that	 learning	and	memory	co-evolve	 in	a	217	

static	environment	when	 there	are	heavy	constraints	on	participants’	behavior,	matching	218	

those	of	the	theory.	Specifically,	participants	checked	the	number	of	locations	specified	by	219	

their	learning	gene	and,	when	revisiting	a	familiar	country,	relied	entirely	on	their	memory.	220	

In	 one	 of	 the	 two	 simulations,	we	 fixed	memory	 to	 zero;	 in	 the	 other,	 it	was	 allowed	 to	221	

evolve.	Matching	 the	 theoretical	model,	 we	 found	 that	when	 both	 learning	 and	memory	222	

were	permitted,	they	evolved	to	high	equilibria	(9.15,	[8.74,	9.55]	locations	and	6.67	[6.21,	223	

7.14]	trials,	respectively).	Without	memory,	learning	evolved	to	a	lower	equilibrium	value	224	

of	 3.60	 [3.18,	 4.03]	 locations	 (Figure	 4B),	 providing	 strong	 evidence	 that	 learning	 and	225	

memory	co-evolved.	226	

	 In	the	third	experiment,	we	examined	whether	the	co-evolution	could	proceed	in	the	227	

face	 of	 environmental	 change	when	more	 complex	 behaviors	 are	 permitted.	 Participants	228	
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could	now	check	any	number	of	 locations,	 up	 to	 a	maximum	determined	by	 the	value	of	229	

their	learning	gene;	this	was	true	both	of	new	and	familiar	countries.	We	set	the	probability	230	

of	 environmental	 change	 to	 40%,	 such	 that	 at	 the	 end	 of	 every	 trial,	 there	 was	 a	 40%	231	

chance	that	the	treasure	would	move.	Modeling	results	(see	SI)	showed	that,	if	participants’	232	

behavior	 were	 consistent	 with	 the	 constraints	 in	 the	 previous	 experiments,	 this	 rate	 of	233	

environmental	 change	 prevents	 evolution	 of	 memory	 or	 learning.	 In	 contrast,	 we	 found	234	

that	 the	 co-evolution	 proceeded	 in	 the	 face	 of	 environmental	 change	 when	 real	 human	235	

participants	 were	 involved,	 with	 the	 final	 value	 of	 memory	 being	 around	 2.5	 times	 the	236	

environmental	 half-life	 (final	 generation,	 learning:	 9.30,[8.97,	 9.63]	 locations,	 memory:	237	

3.25	[2.77,	3.74]	trials,	Figure	4C).		238	

	 We	 have	 shown	 that	 the	 insertion	 of	 human	 participants	 into	 large-scale	239	

evolutionary	 simulations	 facilitates	 the	 experimental	 study	 of	 the	 genetic	 and	 cultural	240	

evolution	 of	 cognition	 and	 behavior.	 Constraining	 human	 behavior	 to	 match	 the	241	

assumptions	of	theoretical	models	reproduces	theoretical	results	such	as	Rogers’	Paradox,	242	

the	 Baldwin	 Effect,	 and	 the	 co-evolution	 of	 learning	 and	 memory.	 Relaxing	 these	243	

constraints	 leads	 to	 new	 insights.	 Although	people	 adjust	 their	 social	 learning	 in	 light	 of	244	

environmental	change,	they	do	so	ineffectively,	 lessening	the	frequency	of	social	 learning.	245	

The	Baldwin	effect	is	more	likely	to	genetically	support	behaviors	that	are	harder	to	learn.	246	

Finally,	 human	 behavior	 enables	 learning	 and	 memory	 to	 coevolve	 despite	 rapid	247	

environmental	 change.	 Collectively,	 these	 results	 support	 large-scale	 evolutionary	248	

simulations	 as	 a	 paradigm	 for	 investigating	 human	 cultural	 and	 biological	 evolution,	249	

complementing	approaches	based	on	theoretical	models	and	laboratory	experiments.	250	
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1 Full	methods	62	

Here,	we	describe	the	methods	of	the	studies	in	the	same	order	in	which	they	were	63	

presented	 in	 the	main	text.	For	each	study,	we	describe	(1)	 the	experimental	 task,	64	

(2)	 the	 experimental	 procedure,	 (3)	 the	 simulation	 parameters	 (e.g.,	 simulated	65	

genes,	fitness),	and	(4)	the	simulation	procedure.	66	

1.1 The	evolution	of	social	learning	67	

We	 carried	 out	 218	 simulations	 in	 which	 two	 genotypes	 evolved	 –	 an	 asocial	68	

genotype	 and	 a	 social	 genotype	 –	 in	 a	 changing	 environment.	 The	 different	69	

simulations	used	tasks	of	different	difficulty	and	different	forms	of	social	learning.	70	

1.1.1 Experiment	1	71	

The	first	experiment	investigated	the	evolution	of	a	limited	form	of	social	learning	in	72	

the	context	of	a	task	with	three	levels	of	difficulty.	73	

1.1.1.1 The	experimental	task	74	

Participants	took	part	in	125	trials	of	a	numerical	discrimination	task.	On	each	trial,	75	

participants	were	required	to	decide	 if	an	array	of	blue	and	yellow	dots	contained	76	

more	 blue	 dots	 or	 more	 yellow	 dots.	 The	 information	 participants	 received	 on	77	

whether	 the	 participants’	 genes	 marked	 them	 as	 an	 asocial	 learner	 or	 a	 social	78	

learner.	79	

	 On	 asocial	 trials,	 participants	 saw	 the	 array	 of	 blue	 and	 yellow	 dots	 for	 1s	80	

(Figure	S2a).	After	which	 they	made	 their	decision	by	 clicking	one	of	 two	buttons	81	

labeled	 “more	blue”	and	 “more	yellow”.	 In	 total	 there	were	80	dots	each	of	which	82	
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was	 positioned	 randomly	 on	 a	 rectangular	 grey	 canvas	with	 no	 dots	 overlapping.	83	

The	size	of	each	dot	was	randomized	such	that	the	radii	of	the	dots	ranged	from	10	84	

pixels	to	20	pixels.	The	difficulty	of	each	trial	was	determined	by	the	number	of	dots	85	

of	the	majority	color	relative	to	the	number	of	dots	of	the	minority	color.	Using	pilot	86	

studies	 we	 selected	 three	 difficulty	 levels:	 52	 vs	 28	 being	 easy,	 45	 vs	 35	 being	87	

moderate	 and	 42	 of	 the	 38	 being	 hard.	  The chosen levels of difficulty were arrived at 88	

through an experiment in which 120 participants completed 125 trials of the asocial task 89	

across different levels of difficulty. The resulting psychometric function, fit using a 90	

logistic function, was used to determine task difficulties that would produce performance 91	

close to ceiling (i.e. easy), ~85% accuracy (moderate) and ~65% accuracy (hard, Figure	92	

S1).	93	

	 On	social	 trials	participants	did	not	get	to	see	the	dots	 for	themselves,	rather	94	

they	were	 informed	of	 the	decision	of	another	participant	randomly	selected	 from	95	

the	previous	generation	of	the	same	simulation	(Figure	S2b).	As	with	asocial	trials,	96	

after	receiving	information	participants	made	their	decision	by	clicking	one	of	two	97	

	
Figure	 S1.	 Results	 of	 the	 psychophysics	 experiment	 used	 to	 determine	 task	
difficulty.	
	

	



	 5	

buttons	labeled	“more	blue”	and	“more	yellow”.	98	

1.1.1.2 The	experimental	procedure	99	

Participants	 were	 recruited	 through	 Amazon	 Mechanical	 Turk	 (AMT),	 an	 online	100	

labor	market	where	people	perform	short	tasks	for	pay.	Recruitment	was	limited	to	101	

U.S.	 participants	 for	whom	at	 least	95%	of	 their	previous	 tasks	on	AMT	had	been	102	

approved.	Recruitment	and	testing	were	approved	by	the	Committee	for	Protection	103	

of	 Human	 Subjects	 at	 University	 of	 California,	 Berkeley	 and	 carried	 out	 in	104	

accordance	with	their	regulations.		105	

	 Of	the	125	trials,	the	first	5	were	practice	trials.	In	practice	trials	there	were	64	106	

dots	in	the	majority	so	they	were	very	easy.	After	this	the	participants	took	part	in	107	

the	 remaining	 120	 trials	 in	 a	 random	 order.	 Of	 these	 36	 were	 easy,	 36	 were	108	

moderate	and	36	were	hard.	The	remaining	12	trials	were	“catch”	trials	–	they	were	109	

the	same	difficulty	as	the	practice	trials	and	were	used	to	identify	participants	who	110	

were	not	paying	attention	to	the	task	(see	below).	111	

A	 	 	 	 	 	 B	

	
Figure	S2.	Stimuli	from	the	numerical	discrimination	task.	(a)	An	example	of	the	
dot	arrays	shown	on	asocial	trials.	In	this	case	there	are	more	yellow	dots	than	
blue	 dots	 and	 this	 would	 considered	 a	 very	 easy	 trial.	 (b)	 An	 example	 of	 the	
social	information	shown	on	social	trials.	
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	 For	each	trial,	whether	there	were	more	blue	or	yellow	dots	was	randomized	112	

such	that	each	trial	was	independent	of	the	others.	113	

	 The	experiment	took	around	10	minutes	in	total	and	participants	were	paid	$1	114	

for	taking	part.	In	addition,	participants	received	a	bonus	of	up	to	$1	contingent	on	115	

their	success	 in	categorizing	amoeba.	Performance	on	practice	 trials	did	not	affect	116	

their	 bonus	 and	 participants	were	 informed	 of	 this.	 Each	 participant’s	 bonus	was	117	

given	by	118	

	 ! = max min 	
)*
54

− 1, 1 , 0 ,	 (1)	

where	 Ns	 is	 the	 number	 of	 trials	 (excluding	 practice	 and	 catch	 trials)	 on	 which	119	

participants	made	the	correct	decision.	120	

	121	

1.1.1.3 The	simulation	parameters	122	

Each	 trial	 that	 participants	 took	 part	 in	 corresponded	 to	 a	 different	 agent	 in	 a	123	

different	repeat	simulation.	Thus	we	were	able	to	carry	out	108	repeat	simulations	124	

(excluding	the	5	practice	repeats	and	the	12	catch	repeats).	Within	each	simulation	125	

the	difficulty	was	constant,	so	there	were	36	hard	repeats,	36	moderate	repeats	and	126	

36	easy	repeats.	127	

	 Each	agent	had	a	 single	gene	with	 two	possible	values	 that	dictated	whether	128	

they	 were	 a	 social	 learner	 or	 an	 asocial	 learner.	 Thus,	 across	 trials,	 as	 the	129	

participants	moved	between	different	agents	in	different	simulations	whether	or	not	130	

they	were	a	social	learner	or	an	asocial	learner	varied.	131	
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	 At	the	end	of	each	trial,	the	fitness	of	the	agent	the	participant	had	just	played	132	

as	was	given	by	133	

	 1 =

1, asocial	and	right
0, asocial	and	wrong

1.69, social	and	right			
0.09, social	and	wrong

	 (2)	

	 Each	 new	 agent	 inherited	 its	 gene	 from	 a	 single	 agent	 in	 the	 previous	134	

generation	 of	 the	 same	 simulation.	 The	 parent	 agent	 was	 randomly	 selected	135	

weighted	 by	 fitness.	 Inheritance	was	 subject	 to	mutation	 and	with	 a	 10%	 chance	136	

agents	would	switch	from	one	genotype	to	the	other.	Mutation	was	not	possible	in	137	

the	practice	or	catch	simulations,	thus	ensuring	that	all	these	trials	involved	asocial	138	

learning.	139	

1.1.1.4 The	simulation	procedure	140	

As	 described	 above,	 participants	 took	 part	 in	 125	 repeat	 simulations.	 In	 each	141	

simulation,	agents	were	arranged	into	a	“discrete	generational”	network	consisting	142	

of	 40	 non-overlapping	 generations	 each	 of	 40	 agents,	 totaling	 1600	 participants	143	

(Figure	 S3).	 After	 every	 10th	 generation	 the	 environment	 changed	 such	 that	 the	144	

color	of	the	majority	of	dots	changed,	but	the	difficulty	of	the	task	(i.e.	the	number	of	145	

dots	of	the	majority	color)	remained	the	same.	Agents	inherited	their	gene	from	an	146	

agent	in	the	previous	generation	and	agents	in	the	first	generation	were	all	asocial	147	

learners	(there	was	no	previous	generation	from	which	they	could	learn	socially).	148	
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	149	

	 After	 completing	 all	 trials	 each	 participant’s	 data	 was	 checked	 for	150	

completeness	 and	 for	 whether	 the	 participant	 appeared	 to	 have	 attended	 to	 the	151	

task.	Participants	failed	the	completeness	check	if	(i)	they	had	the	incorrect	number	152	

of	agents,	(ii)	they	hadn’t	taken	part	in	each	repeat	once,	(iii)	any	of	their	agents	did	153	

not	have	a	fitness.	Participants	failed	the	attention	check	if	they	got	fewer	than	10	of	154	

the	12	catch	 trials	correct.	 If	either	check	was	 failed,	or	 if	 the	participant	 failed	 to	155	

finish	the	experiment,	 the	participant	was	removed	from	the	network	and	another	156	

participant	was	recruited	to	replace	them.	157	

	
Figure	S3.	A	discrete	generational	network.	Agents	are	arranged	into	generations	
of	a	specific	size	—	in	this	case	40.	Inheritance	occurs	from	one	generation	to	the	
next.	The	simulation	continues	for	a	specified	number	of	generations,	here	40.	
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	 In	total,	1600	participants	(83.7%)	completed	the	experiment	successfully,	24	158	

(1.2%)	failed	the	attention	check,	4	(0.2%)	failed	the	data	check,	232	(12.0%)	quit	159	

without	finishing	and	53	(2.7%)	ran	out	of	time	(the	time	limit	was	30	minutes).	160	

1.1.2 Experiment	2	161	

The	second	experiment	investigated	the	evolution	of	a	more	complex	form	of	social	162	

learning.	It	was	the	same	as	the	previous	experiment	with	the	following	differences:	163	

1.1.2.1 The	experimental	task	164	

Participants	took	part	in	89	trials	of	the	numerical	discrimination	task.	As	before,	on	165	

each	trial,	participants	were	required	to	decide	if	an	array	of	blue	and	yellow	dots	166	

contained	 more	 blue	 dots	 or	 more	 yellow	 dots.	 The	 information	 participants	167	

received	on	whether	the	participants’	genes	marked	them	as	an	asocial	learner	or	a	168	

social	learner.	169	

	 On	asocial	trials	the	task	was	the	same	as	before,	with	difficulty	held	constant	170	

to	moderate,	however,	on	social	trials	it	was	different.	On	some	social	trials,	as	in	the	171	

first	 experiment,	 participants	 were	 informed	 of	 the	 decision	 of	 a	 single	 previous	172	

participant.	 However	 on	 other	 social	 trials,	 participants	 were	 informed	 of	 the	173	

decisions	of	all	40	agents	in	the	previous	generation	of	the	same	simulation	(Figure	174	

S4).	Moreover,	 in	 this	 experiment	 participants	were	 informed	 that	 between	 every	175	

generation	there	was	a	10%	chance	that	the	dots	would	change	color	causing	the	old	176	

information	to	be	out	of	date.	177	

1.1.2.2 The	experimental	procedure	178	
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As	before,	the	first	5	trials	were	very	easy	practice	trials	and	12	of	the	subsequent	179	

trials	were	catch	trials.	Of	the	remaining	72	trials	–	36	provided	social	learners	with	180	

the	decision	of	a	single	individual	whilst	the	remaining	36	provided	social	learners	181	

with	the	decisions	of	all	40	agents	from	the	previous	generation.	182	

1.1.2.3 The	simulation	parameters	183	

Each	 trial	 that	 participants	 took	 part	 in	 corresponded	 to	 a	 different	 agent	 in	 a	184	

different	 repeat	simulation.	Thus	we	were	able	 to	carry	out	72	repeat	simulations	185	

(excluding	the	5	practice	repeats	and	the	12	catch	repeats).	Within	each	simulation	186	

the	nature	of	 social	 learning	was	 constant,	 so	 there	were	36	 repeats	where	 social	187	

learning	involved	seeing	the	decision	of	one	other	individual	and	36	repeats	where	188	

social	learners	were	informed	of	the	entire	previous	generation.	189	

1.1.2.4 The	simulation	procedure	190	

In	each	of	the	repeat	simulations	the	color	of	the	dots	changed	every	10	generations,	191	

however,	 each	 simulation	was	 staggered	 such	 that	 some	 in	 some	 simulations	 the	192	

dots	 changed	color	after	generations	1,	11,	21	and	so	on,	while	 in	others	 the	dots	193	

changed	color	after	generations,	2,	12,	22	and	so	on.	This	meant	that	whether	or	not	194	

	
Figure	 S4.	 An	 example	 of	 the	 social	 information	 participants	might	 receive	 on	
social	 trials.	 In	 this	 case	 the	 participant	 can	 see	 the	 decisions	 of	 all	 40	
participants	in	the	previous	generation,	30	of	whom	chose	blue	and	10	of	whom	
chose	yellow.	
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you	 thought	 the	 dots	 had	 recently	 changed	 color	 in	 one	 simulation	 that	 told	 you	195	

nothing	about	other	simulations.	196	

	 In	 total	 1600	 participants	 (83.0%)	 successfully	 completed	 the	 experiment,	 0	197	

failed	 the	 data	 check,	 0	 failed	 the	 attention	 check,	 259	 (13.4%)	 quit	 without	198	

finishing	and	69	(3.6%)	ran	out	of	time	(the	time	limit	was	30	minutes).	199	

1.2 The	Baldwin	Effect	200	

We	 carried	 out	 18	 behavioral	 simulations	 in	 which	 error-correcting	 genes	 could	201	

evolve	in	the	context	of	a	categorization	task.	The	different	simulations	used	Type	I,	202	

Type	II	and	Type	V	categorization	rules.		203	

1.2.1 The	experimental	task	204	

Participants	took	part	in	18	trials	of	a	categorization	task.	On	each	trial,	participants	205	

were	 required	 to	 categorize	 8	 different	 amoeba	 into	 two	 categories;	 “good”	 and	206	

“bad”.	 The	 amoeba	 varied	 in	 3	 dimensions;	 body	 color	 (blue	 or	 orange),	 nucleus	207	

color	(green	or	purple)	and	spottiness	(spotty	or	not	spotty).	On	every	trial,	4	of	the	208	

amoeba	were	“good”	and	the	other	four	were	“bad”	however	which	of	the	amoeba	209	

were	good	or	bad	varied	across	trials.	On	every	trial	the	correct	categorization	was	210	

determined	by	either	a	Type	 I,	Type	 II	or	Type	V	 rule	 (Figure	S5a-c).	Type	 I	 rules	211	

depend	on	a	 single	dimension,	 for	 example	 “blue	 amoeba	are	 good”.	Type	 II	 rules	212	

depend	on	a	conjunction	of	 two	dimensions,	 for	example	“blue	and	spotty	amoeba	213	

and	orange	and	not	spotty	amoeba	are	good”.	Type	V	rules	are	like	a	Type	I	rule,	but	214	

with	a	pair	of	exceptions,	 for	example	“amoeba	with	green	nuclei	are	good,	unless	215	
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the	 amoeba	 has	 a	 blue	 body	 and	 spots	 in	 which	 case	 the	 amoeba	 with	 a	 purple	216	

nucleus	is	good	and	the	amoeba	with	the	green	nucleus	is	bad”.	217	

At	the	start	of	each	trial,	participants	were	shown	the	correct	categorization	218	

of	all	8	amoeba	for	15	seconds	(Figure	S5a-c).	They	were	then	sequentially	shown	219	

all	8	amoeba,	in	a	random	order,	and	asked	to	categorize	them	by	pressing	“up”	for	220	

good	or	“down”	for	bad	(Figure	S5d).	221	

	222	

A	 	 	 	 	 	 B	

	 	
C	 	 	 	 	 	 D	

	
Figure	S5.	 (a)	A	Type	 I	 rule,	 in	 this	 case	 the	 rule	 is	 “blue	amoeba	are	good”.	 (b)	A	
Type	 II	 rule,	 in	 this	 case	 the	 rule	 is	 “orange	 amoeba	 with	 green	 nuclei	 and	 blue	
amoeba	 with	 purple	 nuclei	 are	 good”.	 (c)	 A	 Type	 V	 rule,	 in	 this	 case	 the	 rule	 is	
“amoeba	with	purple	nuclei	are	good,	unless	they	are	blue	and	don’t	have	spots,	in	
that	 case	 the	 amoeba	 with	 a	 green	 nucleus	 is	 good”.	 (d)	 After	 being	 shown	 the	
correct	categorization	of	all	8	amoebas	participants	were	then	asked	to	categorize	all	
8	 amoeba	 themselves.	 In	 the	 image	 shown	 the	 participant	 is	 being	 prompted	 to	
categorize	the	blue	spotty	amoeba	with	a	purple	nucleus.	
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1.2.2 The	experimental	procedure	223	

As	before,	participants	signed	up	through	Amazon’s	Mechanical	Turk,	gave	consent,	224	

were	provided	with	instructions,	completed	the	trials	and	were	then	debriefed.	225	

	 Of	the	18	trials,	the	first	three	were	practice	trials,	involving	a	Type	I,	II	and	V	226	

rule	respectively.	Of	the	remaining	15	trials,	3	used	a	Type	I	rule,	6	used	a	Type	II	227	

rule	and	6	used	a	Type	V	rule	and	participants	completed	them	in	a	random	order.	228	

Which	 dimensions	 were	 involved	 in	 the	 rule,	 and	 which	 values	 corresponded	 to	229	

“goodness”	was	randomly	selected	at	 the	start	of	 the	simulation	and	varied	across	230	

trials.	231	

	 The	experiment	took	around	10	minutes	in	total	and	participants	were	paid	$1	232	

for	taking	part.	In	addition,	participants	received	a	bonus	of	up	to	$1	contingent	on	233	

their	success	 in	categorizing	amoeba.	Performance	on	practice	 trials	did	not	affect	234	

their	 bonus	 and	 participants	were	 informed	 of	 this.	 Each	 participant’s	 bonus	was	235	

given	by	236	

	 ! = max	(min 	@A
BC
− 1, 1 , 0),	 (3)	

where	Ns	is	the	number	of	amoeba	participants	successfully	categorized.	237	

1.2.3 The	simulation	parameters	238	

Each	 trial	 that	 participants	 took	 part	 in	 corresponded	 to	 a	 different	 agent	 in	 a	239	

different	repeat	simulation.	Thus,	we	were	able	to	carry	out	15	repeat	simulations	240	

(excluding	 the	 3	 practice	 repeats).	 Within	 each	 simulation	 the	 type	 of	 the	241	

categorization	 rule	 was	 constant,	 so	 3	 of	 the	 repeats	 involved	 a	 Type	 I	 rule,	 6	242	

involved	a	Type	II	rule	and	the	remaining	6	involved	a	Type	V	rule.	243	
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	 Each	 agent	 had	 a	 genome	 consisting	 of	 8	 different	 genes.	 Each	 gene	244	

corresponded	to	one	of	the	8	amoeba	and	had	two	possible	alleles:	a	neutral	allele	245	

and	a	beneficial	 allele.	The	neutral	 allele	had	no	effect	 on	 the	 agent,	 however,	 the	246	

beneficial	 allele	 automatically	 corrected	 categorization	 errors	 made	 by	 the	247	

participant	with	 regards	 to	 the	 amoeba	 that	 the	 gene	 corresponded	 to.	This	 error	248	

correction	was	hidden	from	the	participant	and	did	not	affect	their	bonus,	however	249	

it	did	affect	the	fitness	of	the	agent.	250	

	 At	the	end	of	each	trial	the	fitness	of	the	agent	the	participant	had	just	played	251	

as	was	given	by	252	

	 1 = max	(
)
4
− 1

E

, 0.0001),	 (4)	

where	N	 is	 the	number	of	 the	8	amoeba	 that	were	successfully	categorized	by	 the	253	

participant,	or	were	corrected	by	the	beneficial	alleles.	The	fitness	function	is	cubed	254	

to	increase	fitness	differences,	allowing	selection	to	proceed	on	the	relatively	small	255	

population	sizes	we	used.	256	

	 Each	new	agent	inherited	its	genes	via	simulated	sexual	reproduction	from	two	257	

agents	 in	 the	 previous	 generation.	 The	 parent	 agents	 were	 selected	 at	 random,	258	

weighted	 by	 fitness.	 The	 offspring’s	 genome	 was	 a	 random	 combination	 of	 their	259	

parents’	genes	with	each	gene	being	equally	likely	to	be	inherited	from	one	parent	260	

or	 the	other.	 Inheritance	was	subject	 to	mutation	–	 for	each	gene	 there	was	a	5%	261	

chance	 its	 contents	 would	 be	 randomized	 producing	 a	 neutral	 allele	 with	 a	 75%	262	

chance	or	a	beneficial	allele	with	a	25%	chance.	263	

	264	
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1.2.4 The	simulation	procedure	265	

As	 described	 above,	 participants	 took	 part	 in	 18	 repeat	 simulations.	 In	 each	266	

simulation,	agents	were	arranged	into	a	“discrete	generational”	network	consisting	267	

of	 40	 non-overlapping	 generations	 each	 of	 60	 agents,	 totaling	 2400	 participants.	268	

Agents	 inherited	 their	 genes	 from	 agents	 in	 the	 previous	 generation	 of	 the	 same	269	

network	 and	 agents	 in	 the	 first	 generation	 were	 randomly	 initialized	 with	 genes	270	

reflecting	 the	 expected	 output	 of	 mutation:	 each	 allele	 of	 each	 agent	 had	 a	 75%		271	

chance	of	having	the	neutral	allele	and	a	25%	chance	of	having	the	beneficial	allele.	272	

	 After	completing	all	trials,	each	participant’s	data	was	checked	for	273	

completeness	and	for	whether	the	participant	appeared	to	have	attended	to	the	274	

task.	Participants	failed	the	completeness	check	if	(i)	they	had	not	taken	part	in	each	275	

simulation	once,	(ii)	any	of	their	agents	did	not	have	a	fitness,	or	(iii)	they	had	not	276	

categorized	the	correct	number	of	amoeba.	Participants	failed	the	attention	check	if	277	

they	averaged	les	than	7	out	of	8	amoeba	correctly	categorized	on	trials	with	a	Type	278	

I	rule.	If	either	check	was	failed,	or	if	the	participant	failed	to	finish	the	experiment,	279	

the	participant	was	removed	from	the	network	and	another	participant	was	280	

recruited	to	replace	them.	281	

	 In	total,	2400	participants	(72.7%)	completed	the	experiment	successfully,	460	282	

(13.9%)	failed	the	attention	check,	60	(1.8%)	failed	the	data	check,	293	(8.9%)	quit	283	

early	and	87	(2.6%)	ran	out	of	time	(the	time	limit	was	30	minutes).	284	

	285	
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1.3 The	coevolution	of	learning	and	memory	286	

1.3.1 Experiment	1	287	

We	carried	out	two	simulations,	one	in	which	both	learning	and	memory	were	able	288	

to	evolve,	and	another	in	which	only	learning	was	able	to	evolve.	289	

1.3.1.1 The	experimental	task	290	

Participants	performed	20	trials	of	a	sequential	decision-making	task	in	the	form	of	291	

a	“treasure	hunt”	game.	Each	trial	was	labeled	with	a	country	and	participants	were	292	

tasked	with	 finding	which	 of	 10	 locations	 in	 that	 country	 contained	 the	 treasure.	293	

Each	 location	 was	 represented	 with	 a	 labeled	 image	 and	 the	 10	 images	 were	294	

arranged	 in	 a	 ring	 around	 a	 central	 panel	 containing	 the	 name	 and	 flag	 of	 the	295	

country	 the	 trial	 was	 set	 in	 (Figure	 S6a).	 Before	 committing	 to	 a	 decision,	296	

participants	were	required	to	check	between	1	and	10	of	the	locations.	Checking	a	297	

location	 informed	 participants	 whether	 the	 treasure	 was	 hidden	 at	 that	 location.	298	

Participants	checked	locations	by	clicking	on	the	corresponding	images,	and,	 if	 the	299	

treasure	was	 at	 that	 location,	 the	 image	was	 replaced	with	 an	 icon	 of	 a	 treasure	300	

chest;	 otherwise	 it	 was	 replaced	 with	 a	 red	 X	 (Figure	 S6b).	 After	 checking	 the	301	

required	number	of	 locations,	all	 the	 location	 images	returned	to	their	 initial	state	302	

and	participants	were	asked	to	guess	which	location	had	the	treasure	(Figure	S6c).	303	

If	participants	found	the	treasure	during	the	checking	period,	this	decision	ought	to	304	

be	trivial.	However,	if	they	had	not	found	the	treasure,	they	would	need	to	guess	by	305	

selecting	among	the	unchecked	locations.	306	

	 Across	 trials,	 participants	might	 revisit	 a	 country.	 In	 such	 cases,	 participants	307	
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were	 unable	 to	 check	 any	 more	 locations	—	 they	 were	 required	 to	 immediately	308	

make	a	decision	based	upon	their	memory	of	their	previous	visit	(Figure	S6d).	309	

1.3.1.2 The	experimental	procedure	310	

 Participants	signed	up	through	Amazon’s	Mechanical	Turk,	gave	consent,	were	311	

provided	with	instructions,	completed	the	trials	and	were	then	debriefed.	312	

	 Upon	signing	up,	participants	were	asked	to	give	their	consent.	If	consent	was	313	

given,	 the	 participants	 proceeded	 through	 a	 series	 of	 instruction	 pages	 that	314	

described	 the	 task.	 After	 the	 instructions,	 participants	 completed	 all	 20	 trials	 and	315	

were	then	debriefed. 316	

	 The	experiment	 took	around	5	minutes	and	participants	were	paid	$0.50	 for	317	

taking	part.	In	addition,	participants	received	a	bonus	of	up	to	$0.50	contingent	on	318	

their	 success	 in	 finding	 the	 treasure.	 The	 bonus	 earned	 by	 each	 participant	 was	319	

given	by	320	

	 ! = max	(min 	FC@AG@H
ICC

, 0.5 , 0),	 (5)	

where	Ns	 is	 the	 number	 of	 trials	 on	which	 participants	 chose	 the	 correct	 location	321	

and	Nc	is	the	number	of	times	participants	checked	a	location.	322	

1.3.1.3 The	simulation	parameters	323	

Each	participant	had	two	simulated	genes:	a	memory	gene	and	a	learning	gene.	The	324	

learning	gene	was	an	integer	between	1	and	10	and	determined	how	many	locations	325	

participants	 could	 check	 per	 trial	 in	 an	 unfamiliar	 country.	 Thus,	 the	 number	 of	326	

locations	 participants	 could	 check	 was	 constant	 across	 trials	 for	 any	 given	327	
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participant,	 but	 varied	 across	 participants.	 Because	 a	 lower	 value	 of	 the	 learning	328	

gene	made	the	task	harder,	the	bonuses	were	adjusted	accordingly	(Equation	(5)).		329	

	 The	memory	 gene	was	 a	 positive	 integer	 that	 affected	 the	 probability	 that	 a	330	

participant	would	 recognize	 a	 previously	 visited	 country.	 For	 each	 participant,	 at	331	

the	start	of	the	experiment,	4	countries	were	chosen	from	a	list	of	75.	On	each	trial,	332	

one	 of	 the	 four	was	 randomly	 selected	 to	 be	 the	 visited	 country.	 However,	 if	 the	333	

A	 	 	 	 	 	 B	

			
C	 	 	 	 	 	 D	

						 	
Figure	 S6.	 Screen	 shots	 from	 the	 treasure	 hunt	 task.	 (a)	 Upon	 arrival	 at	 a	 new	
country	 participants	 are	 instructed	 to	 check	 a	 number	 of	 possible	 locations.	 (b)	
Checking	a	location	reveals	either	the	treasure	or	a	red	X.	(c)	After	finishing	checking	
all	 locations	 return	 to	 their	original	 images	 and	 the	 participant	must	make	 a	 final	
decision.	 (d)	 If	 participants	 revisit	 a	 familiar	 location	 they	 cannot	 check	 locations	
again	and	were	asked	to	make	a	single	decision	immediately.	
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participant	 had	 visited	 it	 before	 but	 the	 elapsed	 time	 since	 the	 previous	 visit	334	

exceeded	the	value	of	 their	memory	gene,	 that	country	was	replaced	with	another	335	

country	from	the	list	of	75	that	had	not	yet	been	visited,	simulating	forgetting.	Thus,	336	

a	 memory	 value	 of	 0	 prevents	 participants	 from	 recognizing	 previously	 visited	337	

countries,	masking	their	memory.	In	contrast,	a	participant	with	a	memory	value	of	338	

10	would	likely	recognize	their	repeated	revisiting	of	a	small	number	of	countries,	339	

and	so	would	be	able	to	use	their	memory.	340	

	 The	agent’s	fitness	was	given	by	341	

	 1 = (10 + 10)* − )K − 2M)I,	 (6)	

where	M	is	the	value	of	the	agent’s	memory	gene.	The	fitness	function	is	squared	to	342	

increase	fitness	differences	and	allow	selection	to	proceed	more	rapidly.	343	

	 Each	 agent	 inherited	 genes	 from	 a	 randomly	 selected	 parent	 agent	 in	 the	344	

previous	 generation,	 weighted	 by	 fitness.	 Inheritance	 was	 subject	 to	mutation	—	345	

there	was	a	50%	chance	the	value	of	each	gene	would	be	unchanged,	a	25%	chance	346	

that	the	value	would	increase	by	1,	and	a	25%	chance	that	it	would	decrease	by	1,	347	

unless	 the	 mutation	 would	 produce	 a	 value	 outside	 the	 permitted	 range	 (e.g.	 a	348	

negative	 value	 for	 memory),	 in	 which	 case	 it	 was	 prevented.	 In	 the	 control	349	

simulation	without	memory,	 the	memory	 genes	 of	 all	 participants	were	 forced	 to	350	

have	a	value	of	0.	351	

1.3.1.4 The	simulation	procedure	352	

In	both	simulations,	agents	were	arranged	into	a	“discrete	generational”	network	—	353	
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each	 had	 40	 non-overlapping	 generations	 of	 40	 agents,	 totaling	 1600	 agents	 per	354	

simulation.	 Agents	 inherited	 their	 genes	 from	 a	 single	 agent	 in	 the	 previous	355	

generation.	 Agents	 in	 the	 first	 generation	 inherited	 their	 genes	 from	 a	 simulated	356	

agent	with	both	learning	and	memory	of	1.	357	

	 After	 completing	 the	 experiment,	 each	 participant’s	 data	 was	 checked	 for	358	

completeness	 and	 for	 whether	 the	 participant	 attended	 to	 the	 task.	 The	359	

completeness	 check	 was	 failed	 if	 the	 participant	 either	 (i)	 had	 taken	 part	 as	 the	360	

incorrect	 number	 of	 agents,	 (ii)	 had	 the	 incorrect	 number	 of	 genes,	 (iii)	 was	361	

connected	 to	 an	 incorrect	 number	 of	 other	 agents,	 (iv)	 had	 made	 an	 incorrect	362	

number	of	decisions	or	checks,	or	(v)	did	not	have	a	fitness.	The	attention	check	was	363	

failed	if,	more	than	twice,	the	participant	found	the	treasure	but	did	not	then	choose	364	

that	 location	as	 their	 final	decision.	 If	either	check	was	 failed,	or	 if	 the	participant	365	

failed	to	finish	the	experiment,	the	participant	was	removed	from	the	network	and	366	

another	participant	was	recruited	to	replace	them.	367	

	 In	the	simulation	with	both	memory	and	 learning,	1600	(81.1%)	participants	368	

completed	 the	 experiment	 successfully,	 181	 (9.2%)	 failed	 the	 attention	 check,	 18	369	

(0.9%)	 failed	the	data	check,	125	(6.3%)	quit	without	 finishing	and	48	(2.4%)	ran	370	

out	of	 time	(the	time	 limit	was	15	minutes).	With	only	 learning	allowed	to	evolve,	371	

1600	(79.6%)	participants	completed	successfully,	233	(11.6%)	failed	the	attention	372	

check,	 16	 (0.8%)	 failed	 the	 data	 check,	 130	 (6.5%)	 quit	without	 finishing	 and	 32	373	

(1.6%)	timed	out.	374	
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1.3.2 Experiment	2	375	

The	second	experiment	was	the	same	as	the	previous	experiment	with	the	following	376	

differences:	377	

1.3.2.1 The	experimental	task	378	

Participants	 took	part	 in	40	rounds	of	 the	 “treasure	hunt”	 task.	 In	 this	 simulation,	379	

participants	 were	 allowed	 to	 check	 locations	 for	 treasure	 even	 on	 revisits	 to	 a	380	

familiar	country.	Moreover,	the	value	of	their	learning	gene	no	longer	controlled	the	381	

number	 of	 checked	 locations.	 Rather,	 it	 set	 the	 upper	 limit	 on	 the	 number	 of	382	

locations	 that	 could	 be	 checked	 —	doing	 so	 was	 optional.	 Finally,	 the	 treasure	383	

changed	 location:	 at	 the	 end	 of	 each	 trial,	 the	 treasure	 changed	 locations	 with	384	

probability	0.40.	The	time	limit	was	20	minutes.	385	

	386	

1.3.2.2 The	experimental	procedure	387	

The	procedure	was	the	same	as	before.	Participants	were	informed	that	the	treasure	388	

could	move.	The	experiment	took	around	7	minutes	 in	total	and	participants	were	389	

paid	$0.60	for	taking	part.	In	addition,	participants	received	a	bonus	of	up	to	$0.60	390	

contingent	 on	 their	 success	 in	 choosing	 the	 locations	 where	 the	 treasure	 was	391	

hidden.	The	bonus	earned	by	each	participant	was	given	by	392	

	 ! = max	(min 	E(FC@AG@HGNC)
FCCC

, 0.6 , 0.0).	 (7)	
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1.3.2.3 The	simulation	parameters	393	

Fitness	was	given	by	394	

	 1 = (10 + 10)* − )K − 4M − 4O)I,	 (8)	

where	L	is	the	value	of	the	agent’s	learning	gene.	The	cost	of	memory	was	doubled	395	

from	2	to	4	because	participants	took	part	in	twice	as	many	trials	as	before.	In	the	396	

previous	experiment	checking	was	costly,	but	also	mandatory,	so	it	was	equivalent	397	

to	a	fixed	cost	proportional	to	the	value	of	the	learning	gene.	Here,	because	checking	398	

was	optional,	we	split	the	cost	into	both	a	fixed	cost	proportional	to	the	value	of	the	399	

learning	 gene,	 plus	 a	 cost	 proportional	 to	 the	 number	 of	 time	 an	 agent	 checked	400	

locations.	 Thus,	 the	 fitness	 function	 assumes	 that	 learning	 has	 both	 a	 fixed	 cost,	401	

whether	 or	 not	 you	 engage	 in	 checking,	 as	well	 as	 a	 direct	 cost	 for	 each	 checked	402	

location.	403	

	404	

1.3.2.4 The	simulation	procedure	405	

As	before,	 the	simulation	used	a	discrete	generational	structure.	We	observed	that	406	

1600	(82.3%)	participants	completed	the	experiment	successfully,	79	(4.1%)	failed	407	

the	 attention	 check,	 24	 (1.2%)	 failed	 the	 data	 check,	 122	 (6.3%)	 quit	 without	408	

finishing	and	119	(6.1%)	timed	out.	409	

2 Theoretical	 pilot	 work	 for	 the	 co-evolution	 of	 learning	 and	410	

memory	411	

In	the	main	paper,	we	presented	three	simulations	investigating	the	coevolution	of	412	

learning	 and	 memory.	 Specifically,	 we	 first	 considered	 the	 case	 of	 a	 static	413	
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environment,	 both	 with	 and	 without	 memory.	 We	 found	 evidence	 that	 the	 two	414	

would	coevolve	with	learning	reaching	a	higher	value	when	memory	was	permitted.	415	

After	 this,	we	 then	 sought	 to	 test	 the	 effects	 of	 environmental	 change	 on	 this	 co-416	

evolution.	 The	 theory	 that	 these	 experiments	 were	 based	 upon	 suggests	 that	417	

environmental	change	would	prevent	the	co-evolution.	418	

To	 identify	 an	 appropriate	 rate	 of	 environmental	 change	 to	 test	 this	419	

hypothesis,	 we	 ran	 an	 agent-based	 simulation	 with	 a	 configurable	 rate	 of	420	

environmental	 change.	 Across	 repeats	 of	 the	 simulation,	 we	 considered	 three	421	

behaviors.	The	first	matched	that	of	the	theory	our	experiments	were	based	upon:	422	

agents	check	as	many	locations	as	they	can,	but	upon	returning	to	a	familiar	country	423	

they	make	the	same	decision	as	before.	 In	addition,	we	considered	a	slightly	more	424	

strategic	behavior,	but	 that	 still	 struggled	 to	use	memory	effectively:	agents	check	425	

locations	until	they	find	the	treasure	or	until	they	cannot	check	any	more	locations,	426	

upon	returning	to	a	familiar	country	they	make	the	same	decision	as	before.	Finally,	427	

we	considered	a	more	complex	behavior:	agents	check	locations	until	they	find	the	428	

treasure	or	until	they	cannot	check	any	more	locations,	upon	returning	to	a	familiar	429	

country	they	first	check	the	location	that	they	chose	on	their	last	visit.	If	the	treasure	430	

is	not	there	they	continue	checking	locations	until	they	find	the	treasure	or	cannot	431	

check	any	more	locations.	432	

We	varied	the	rate	of	environmental	change	until	we	found	a	value	for	which	433	

these	three	behaviors	produced	reliably	different	evolutionary	outcomes.	The	value	434	

we	 selected	was	 0.4.	 In	 this	 case,	 if	 agents	 perform	 the	 behavior	 assumed	 in	 the	435	

theory	our	work	is	based	upon	then	neither	learning	nor	memory	evolves.	If	agents	436	
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perform	the	intermediate	behavior	then	learning,	but	not	memory	evolves.	Finally,	437	

the	more	 complex	 strategy	 allowed	 both	 learning	 and	memory	 to	 coevolve.	 Thus,	438	

this	parameter	value	represents	a	point	where	the	assumed	behavior	prevents	the	439	

coevolution,	but	more	complex	behaviors	may	still	permit	 it	and	we	sought	to	test	440	

the	effects	of	real	human	behavior.	441	

	442	

2.1 Simulation	code	443	

The	simulations	were	carried	out	in	R.	The	code	was	as	follows:	444	

 # number of repeats 445	
n_reps <- 20 446	
# number of generations per repeat 447	
n_gens <- 40 448	
# population size 449	
N <- 40 450	
 451	
# are the agents smart 452	
# 0=basic 453	
# 1=moderate 454	
# 2=advanced 455	
smart_agents <- 2 456	
 457	
# number of trials in a lifetime 458	
n_trials <- 40 459	
# number of bandits 460	
n_bandits <- 4 461	
# number of arms per bandit 462	
n_arms <- 10 463	
# the good arms 464	
good_arms <- sample(c(1:n_arms), n_bandits, replace=TRUE) 465	
# number of possible decisions at each trial 466	
n_pulls <- 10 467	
# probability of good_arm changing 468	
p_change <- 0.4 469	
# probability participants correctly remember their decision 470	
p_remember <- 0.8 471	
 472	
# fitness parameters 473	
f_min <- 10 474	
f_pow <- 2 475	
 476	
# payoff from getting right arm 477	
payoff <- 10 478	
# the cost of memory 479	
c_m <- (n_trials*payoff/n_arms)*0.1 480	
# the cost of curiosity 481	
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c_c <- (n_trials*payoff/n_arms)*0.1 482	
# the cost of each check 483	
c_check <- 1*payoff/n_arms 484	
 485	
# the probability of mutation 486	
q <- 0.5 487	
 488	
# turn cognitive abilities on or off 489	
allow_c <- TRUE 490	
allow_m <- TRUE 491	

 492	
# vectors to store the data 493	
m_results <- array(1, dim=c(n_reps, n_gens)) 494	
c_results <- array(1, dim=c(n_reps, n_gens)) 495	
 496	
# for every repeat 497	
for (rep in 1:n_reps) { 498	
  # reset genes 499	
  if (allow_m == TRUE) { 500	
    M <- rep(1, N) 501	
  } else { 502	
    M <- rep(0, N) 503	
  } 504	
  if (allow_c == TRUE) { 505	
    C <- rep(1, N) 506	
  } else { 507	
    C <- rep(0, N) 508	
  } 509	
   510	
  # for every generation 511	
  for (gen in 1:n_gens) { 512	
    #reset fitness 513	
    f <- rep(0, N) 514	
     515	
    # for every individual 516	
    for (i in 1:N) { 517	
       518	
      # initialize data vectors 519	
      success <- rep(FALSE, n_trials) 520	
      num_checks <- rep(0, n_trials) 521	
      decisions <- rep(0, n_trials) 522	
       523	
      # pick the bandits they visit: 524	
      bandits <- sample(c(1:n_bandits), n_trials, replace=TRUE) 525	
       526	
      # for every trial 527	
      for (t in 1:n_trials) { 528	
         529	
        # give the bandits a chance to change their good arm 530	
        for (b in 1:n_bandits) { 531	
          if (runif(1, 0, 1) < p_change) { 532	
            good_arms[b] <- sample(c(1:n_arms), 1) 533	
          } 534	
        } 535	
         536	
        # get their memory of bandits, decisions and successes 537	
        remember_bandit <- FALSE 538	
        if (M[i] > 0 & t > 1) { 539	
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          memory_start <- max(1, t-M[i]) 540	
          memory_end <- t-1 541	
           542	
          remembered_bandits <- bandits[memory_start:memory_end] 543	
          remembered_decisions <- 544	
decisions[memory_start:memory_end] 545	
          remembered_successes <- 546	
success[memory_start:memory_end] 547	
           548	
          remember_bandit <- bandits[t] %in% remembered_bandits 549	
          if (remember_bandit == TRUE) { 550	
            if (runif(1, 0, 1) < p_remember) { 551	
              remembered_decision <- 552	
tail(remembered_decisions[remembered_bandits == bandits[t]], 1) 553	
            } else { 554	
              remembered_decision <- sample(c(1:n_arms), 1) 555	
            } 556	
          } 557	
        } 558	
         559	
        if (smart_agents == 2) { 560	
          # if the agents are smart 561	
          # if they remember the bandit, they check their past 562	
decision 563	
          if (remember_bandit == TRUE & remembered_decision == 564	
good_arms[bandits[t]]) { 565	
            decisions[t] <- remembered_decision 566	
            num_checks[t] <- 1 567	
          } else { 568	
            # otherwise check arms 569	
            checked_arms <- sample(c(1:n_arms), C[i], 570	
replace=FALSE) 571	
             572	
            if (good_arms[bandits[t]] %in% checked_arms) { 573	
              decisions[t] <- good_arms[bandits[t]] 574	
              num_checks[t] <- match(good_arms[bandits[t]], 575	
checked_arms) 576	
            } else { 577	
              decisions[t] <- sample(c(1:n_arms)[!c(1:n_arms) 578	
%in% checked_arms], 1) 579	
              num_checks[t] <- C[i] 580	
            } 581	
          } 582	
        } else if (smart_agents == 1) { 583	
          # if the agents are moderate 584	
          if (remember_bandit == TRUE) { 585	
            # if they remembered the bandit 586	
            # do what they did last time 587	
            decisions[t] <- remembered_decision 588	
            num_checks[t] <- 0 589	
          } else { 590	
            # otherwise check arms 591	
            checked_arms <- sample(c(1:n_arms), C[i], 592	
replace=FALSE) 593	
             594	
            if (good_arms[bandits[t]] %in% checked_arms) { 595	
              decisions[t] <- good_arms[bandits[t]] 596	
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              num_checks[t] <- match(good_arms[bandits[t]], 597	
checked_arms) 598	
            } else { 599	
              decisions[t] <- sample(c(1:n_arms)[!c(1:n_arms) 600	
%in% checked_arms], 1) 601	
              num_checks[t] <- C[i] 602	
            } 603	
          } 604	
        } else { 605	
          if (remember_bandit == TRUE) { 606	
            # if they remembered the bandit 607	
            # do what they did last time 608	
            decisions[t] <- remembered_decision 609	
            num_checks[t] <- 0 610	
          } else { 611	
            # otherwise check arms 612	
            checked_arms <- sample(c(1:n_arms), C[i], 613	
replace=FALSE) 614	
             615	
            if (good_arms[bandits[t]] %in% checked_arms) { 616	
              decisions[t] <- good_arms[bandits[t]] 617	
              num_checks[t] <- C[i] 618	
            } else { 619	
              decisions[t] <- sample(c(1:n_arms)[!c(1:n_arms) 620	
%in% checked_arms], 1) 621	
              num_checks[t] <- C[i] 622	
            } 623	
          } 624	
        } 625	
        success[t] <- (decisions[t] == good_arms[bandits[t]]) 626	
      } 627	
       628	
      #calculate fitness 629	
      f[i] <- max(f_min + sum(success)*payoff - 630	
sum(num_checks)*c_check - C[i]*c_c - M[i]*c_m, 0.001) 631	
      #f[i] <- max(f_min + sum(success)*payoff - sum(num_checks) 632	
- M[i]*c_m, 0.001) 633	
    } 634	
 635	
    # assign fitness as a probability 636	
    fb <- (f/100)**f_pow 637	
    f2 <- fb/sum(fb) 638	
     639	
    # save state 640	
    m_results[rep, gen] <- mean(M) 641	
    c_results[rep, gen] <- mean(C) 642	
     643	
    #do reproduction and mutation 644	
    M2 <- M 645	
    C2 <- C 646	
    fdum <- cumsum(f2) 647	
    parents <- runif(N,0,1) 648	
    for (i in 1:N) { 649	
      parents[i] <- match(TRUE, fdum>parents[i]) 650	
    } 651	
    if (allow_m == TRUE) { 652	
      M2 <- pmax(M[parents] + sample(c(0, 1, -1), N, prob=c(1-q, 653	
q/2, q/2), replace=TRUE), 0) 654	
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    } 655	
    if (allow_c == TRUE) { 656	
      C2 <- pmin(pmax(C[parents] + sample(c(0, 1, -1), N, 657	
prob=c(1-q, q/2, q/2), replace=TRUE), 1), n_pulls) 658	
    } 659	
    M <- M2 660	
    C <- C2 661	
  } 662	
} 663	

3 Analyses	664	

We	 analyzed	 the	 data	 with	 Bayesian	 models	 using	 MCMC	 methods	 to	 estimate	665	

parameter	values.	All	 analyses	were	 carried	using	 the	rjags	 package	 in	R.	Unless	666	

otherwise	stated,	all	parameter	estimates	are	based	on	>3000	independent	samples	667	

generated	 from	 3	 chains.	 The	 values	 quoted	 in	 the	 main	 paper	 are	 the	 central	668	

credible	 intervals	of	 these	 samples	presented	as	 the	median	 sample	and	 the	2.5%	669	

and	97.5%	quantiles.	In	all	cases,	we	used	vague	priors.	670	

3.1 The	evolution	of	social	learning	671	

3.1.1 Experiment	1	672	

3.1.1.1 Allele	frequency	673	

We	modeled	 the	 probability	 an	 agent	was	 a	 social	 learner	 as	 a	 Bernoulli	 variable	674	

with	 a	 logit	 link	 function.	 The	 linear	 predictor	 contained	 a	 fixed	 effect	 for	 the	675	

number	 of	 generations	 since	 the	 environment	 changed	 (ranging	 from	 0	 to	 9)	 for	676	

each	of	the	three	levels	of	difficulty	and	an	additional	random	effect	for	the	repeat,	677	

such	that:	678	

	 PQRSTU	UVTWXVW	~	ZVWX(	[)	 (9)	

where:	679	
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	 UQ\S] [ = 	 _̂,` +	ab 	 (10)	

where	β	and	ε	are	estimated	effect	parameters,	g	is	the	number	of	generations	since	680	

environmental	change,	d	is	the	difficulty	level	and	r	is	repeat	number.	681	

The	priors	were	as	follows:	682	

	 ^	~	)(0.0, 0.01)	 (11)	

	683	

	 a	~	)(0.0, c)	 (12)	

	684	

	 c	~	\TddT(0.001, 0.001)	 (13)	

Data	 from	 the	 practice	 trials	 was	 discarded,	 as	 was	 data	 from	 the	 first	 10	685	

generations,	to	allow	the	population	to	reach	equilibrium.	686	

	 The	average	frequency	of	social	learning	for	each	difficulty	level	was	calculated	687	

by	averaging	the	β	parameters	for	that	level	of	difficulty.	The	magnitude	of	the	drop	688	

in	 social	 learning	 following	 environmental	 change	 was	 calculated	 by	 taking	 the	689	

difference	between	β1,d	and	β3,d.	690	

	691	

3.1.2 Experiment	2	692	

3.1.2.1 Allele	frequency	693	

The	analysis	was	as	described	in	section	3.1.1.1,	except	that	the	social	 information	694	

condition	took	the	place	of	difficulty.	695	
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3.2 The	Baldwin	Effect	696	

3.2.1 Allele	frequency	697	

We	modeled	 the	probability	 that	 an	 allele	 present	 in	 an	 agent	was	beneficial	 as	 a	698	

Bernoulli	variable	with	a	 logit	 link	 function.	The	 linear	predictor	contained	a	 fixed	699	

effect	for	the	type	of	 learning	rule	the	agent	was	learning,	an	effect	of	whether	the	700	

amoeba	 that	 the	 gene	 corresponded	 to	was	 an	 exception	 and	 a	 random	 effect	 for	701	

repeats.	Such	that:	702	

	 TUUVUV~	ZVWX(	[)	 (14)	

where:	703	

	 UQ\S] [ = ê + ab, XQXVfRV[]SQX
ê + g + ab, VfRV[]SQX 		 (15)	

where	β,	γ	and	ε	are	estimated	parameters,	t	 is	the	type	of	rule	and	r	 is	the	repeat	704	

number.	705	

The	priors	were	as	follows:	706	

	 ^	~	)(0.0, 0.001)	 (16)	

	707	

	 a	~	)(0.0, c)	 (17)	

	708	

	 c	~	\TddT(0.001, 0.001)	 (18)	

	709	
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Data	 from	 the	 practice	 trials	 was	 discarded	 as	 was	 all	 data	 from	 the	 first	 39	710	

generations	as	we	wished	to	study	the	frequency	of	the	beneficial	allele	in	the	final	711	

generation.	712	

3.3 The	coevolution	of	learning	and	memory	713	

3.3.1 Learning	714	

We	modeled	the	value	of	an	agent’s	learning	gene	as	a	normally	distributed	variable.	715	

The	 linear	 predictor	 contained	 a	 fixed	 effect	 for	 the	 generation	 the	 agent	was	 in.	716	

Such	that:	717	

	 UVTWXSX\~	)(h, iI)	 (19)	

where:	718	

	 h = 	 _̂	 (20)	

where	 β	 is	 a	 parameter	 to	 be	 estimated	 and	 g	 is	 the	 generation	 within	 the	719	

simulation.	720	

The	priors	were	as	follows:	721	

	 ^	~	)(0.0, 0.001)	 (21)	

	722	

	 iI	~	\TddT(0.001, 0.001)	 (22)	

3.3.2 Memory	723	

Memory	was	analysed	in	the	same	way	as	learning	(see	section	3.3.1)	such	that:	724	
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	 dVdQWj~	)(h, iI)	 (23)	

where:	725	

	 h = 	 _̂	 (24)	

where	 β	 is	 a	 parameter	 to	 be	 estimated	 and	 g	 is	 the	 generation	 within	 the	726	

simulation.	727	

The	priors	were	as	follows:	728	

	 ^	~	)(0.0, 0.001)	 (25)	

	729	

	 iI	~	\TddT(0.001, 0.001)	 (26)	

	730	

	731	


