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Abstract:		

Information	cannot	be	held	indefinitely	in	working	memory.	Do	memories	degrade	

gradually	or	are	they	lost	suddenly	and	completely?	Zhang	&	Luck	(2009)	proposed	that	

working	memories	undergo	“sudden	death”	based	on	evidence	that	only	the	number	of	

remembered	objects,	and	not	their	quality,	changes	with	time.	Here,	we	show	that	this	

pattern	of	results	is	consistent	with	an	alternative	model	where	memories	degrade	

gradually	and	stochastically.	We	formalize	this	model	as	a	sample-based	signal	detection	

model	where	samples	are	lost	randomly	over	time.	The	model	performed	better	than	

sudden	death	models	at	describing	changes	in	memory	across	time	and	accommodates	

a	broader	range	of	known	phenomena,	including	variability	in	the	quality	of	memories.	

Our	results	suggest	that	memories	do	not	suddenly	fail,	but	slowly	degrade	until	death	

by	natural	causes.		
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Introduction	

Nearly	all	complex	activities	require	working	memory,	the	purposeful	storage	of	

information	over	a	short	interval.	The	capacity	of	working	memory	can	be	quantified	

either	by	the	number	of	objects	that	can	be	held	(Cowan;	2001;	Luck	&	Vogel,	1997;	

Miller,	1956;	Zhang	&	Luck,	2008)	or	by	an	information	limit	more	broadly	(Bays	&	

Husain,	2008;	Fougnie,	et	al.,	2010;	Wilken	&	Ma,	2004).	These	approaches	to	

quantifying	the	capacity	of	working	memory	treat	it	as	static,	but	in	reality,	working	

memory	unfolds	over	time,	with	maintenance	and	degradation	pulling	in	opposite	

directions	(Gold	et	al.,	2005;	Magnussen,	2000;	Phillips,	1974;	Sperling,	1960;	Vergauwe,	

Barrouillet,	Camos,	2009;	Yang,	1999).	To	understand	the	limitations	of	working	

memory,	then,	it	is	not	enough	to	consider	only	its	static	behavior	—	the	dynamics	are	

of	primary	concern.	Considering	working	memory	as	a	process	affords	the	explanatory	

power	needed	to	understand	why	the	fidelity	of	our	memories	worsen	over	time.		

	 One	account	of	changes	to	working	memory	representations	was	given	by	the	

Sudden	Death	model	of	Zhang	&	Luck	(2009).	According	to	the	model,	memory	failures	

are	dramatic	events,	with	individual	memories	dying	suddenly,	rather	than	gradually	

losing	their	fidelity	until	they	are	no	longer	of	any	use.	Evidence	for	sudden	death	came	

from	a	technique	that	allows	for	separate	estimation	of	the	quality	and	existence	of	a	

memory.	Zhang	&	Luck	(2009)	measured	these	properties	of	memory	for	colored	circles,	

held	in	mind	for	1	to	10	s.	The	errors	at	10	s	showed	more	random	guesses	than	those	at	

1	s,	which	suggests	that	information	was	lost	over	time.	However,	estimates	of	the	
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quality	of	remembered	items	barely	changed.	The	authors	concluded	that	memory	

failures	are	sudden	and	complete.	

Here,	we	challenge	the	conclusion	that	memory	representations	do	not	

experience	gradual	degradation	over	time.	We	show	that	the	pattern	of	results	thought	

to	be	the	signature	of	sudden	death	is	consistent	another	account:	degradation	and	

death	by	natural	causes.	Recent	research	has	shown	that	there	is	variability	in	the	

quality	of	our	working	memories	(Fougnie,	Suchow,	&	Alvarez,	2012;	van	den	Berg,	et	

al.,	2012),	even	within	trials	(Fougnie	et	al.,	2012;	Suchow,	Fougnie	&	Alvarez,	under	

review).	It	is	thus	important	to	consider	which	memories	are	most	likely	to	die	off,	

because	it	can	have	a	dramatic	effect	on	the	measured	fidelity	of	memory.	The	Sudden	

Death	model,	in	contrast,	assumes	that	memories	are	of	equal	quality	and	that	it	thus	

cannot	matter	which	of	them	fail.	

Consider	the	following	analogy.	Everyone	on	earth	ages	one	year	per	year	—	it	

could	not	be	any	other	way.	But	the	average	age	of	these	individuals	(excluding	births)	

would	not	increase	by	a	year.	Why	is	this?	Mortality	removes	individuals	from	the	group	

selectively—older	individuals	are	more	likely	to	die	off.	The	expected	age	of	living	

individuals	increases	by	less	than	a	year	each	year.		

These	processes	of	variation	plus	selective	removal	may	also	be	at	play	in	

memory	degradation.	Importantly,	selective	removal	of	poorly	remembered	items	and	

memory	degradation	produce	opposite	effects	on	the	measured	quality	of	memory	—	

degradation	worsens	quality,	selective	removal	improves	it.	If	low-quality	memories	are	

more	likely	to	be	forgotten,	then	memories	can	gradually	decay	yet	leave	no	trace	in	the	
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form	of	a	decline	in	the	average.	In	the	extreme,	where	the	lowest-quality	memories	are	

forgotten	more	rapidly	than	the	gradual	degradation	of	them	all,	we	might	even	see	an	

increase	in	the	measured	quality	of	memory	over	time.	

	 When	only	small	(or	no)	changes	in	memory	quality	are	observed,	one	must	be	

careful	not	to	conclude	that	there	was	no	degradation	over	time.	Selective	loss	of	low-

quality	memories	may	have	masked	decreases	in	quality.	One	can	only	measure	

memories	that	still	exist.	Suppose,	for	example,	that	a	person	remembers	three	items	

with	precisions	1,	3,	and	5	(though	the	unit	of	measure	is	arbitrary,	higher	values	

correspond	to	more	precise	memories).	On	average,	our	measurements	would	yield	an	

estimated	precision	of	3.	Now	suppose	the	item	with	the	lowest	precision	(1)	is	lost,	

dying	suddenly,	leaving	only	two	items	(3,	5)	that	contribute	to	our	estimate	of	quality.	

Selective	removal	increases	the	average	quality	to	4.	But	selective	removal	can	play	out	

differently	when	paired	with	a	decrease	in	quality.	Suppose	that,	over	time,	each	item	

lost	unit	of	precision,	falling	to	0,	2,	and	4,	respectively.	Now,	the	loss	of	the	lowest	

quality	item	(0)	leads	to	a	measured	average	that	is	equal	to	the	value	before	the	

decrease	in	quality	(3).	Each	item	degraded,	but	the	average	remained	the	same.		

	 We	propose	a	new	model:	Degradation	and	Death	by	Natural	Causes	(DDNC).	We	

use	the	term	degradation	to	refer	to	a	loss	of	memory	quality	over	time	and	are	

agnostic	as	to	its	source:	decay,	interference,	or	some	other	source.	“Death	by	natural	

causes”	refers	to	the	idea	that	the	process	of	degradation	leads	to	the	selective	removal	

of	low-precision	memories,	similar	to	the	tendency	of	nature	to	remove	the	oldest	

individuals	of	a	population	at	higher	rates.	The	model	proposes	that	information	about	
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items	is	lost	gradually	over	time.	Death,	rather	then	being	a	special	or	sudden	state,	is	

merely	the	end	result	of	having	lost	all	information	about	an	item.	To	preview	our	

results,	this	model	better	predicts	the	changes	in	the	quality	and	existence	of	memories	

over	time	than	variants	of	the	Sudden	Death	model.		

	

Experiment	1	–	Changes	in	memory	over	time	

The	goal	of	Experiment	1	is	to	observe	how	memory	for	a	simple	visual	feature,	color,	

changes	over	time.	Participants	were	shown	three	colorful	circles	for	a	short	duration	

and	were	instructed	to	remember	the	color	of	each	item	(Fougnie	et	al.,	2012;	Wilken	&	

Ma,	2004;	Zhang	&	Luck,	2008;	2009;	Figure	1).	After	a	retention	interval	of	either	1	or	

10	s,	participants’	memory	was	tested	for	a	single,	random	item	by	highlighting	a	

location.	Participants	were	asked	to	select	the	color	of	the	item	that	was	at	that	location	

by	choosing	one	of	many	colors	presented	on	a	circular	color	wheel.	This	estimation	task	

(Wilken	&	Ma,	2004)	provides	a	continuous	measure	of	performance	that	is	useful	for	

differentiating	different	sources	of	error	(Zhang	&	Luck,	2008).		

	

Methods	

Twelve	participants	(8	female,	4	male)	between	the	ages	of	18	and	25	(mean	age	20),	

drawn	form	the	Harvard	community,	participated	for	course	credit	or	monetary	

compensation.	Participants	completed	two	1.5-hour	sessions	on	two	separate	days,	no	

more	than	a	week	apart.	Participants	were	awarded	a	$10	bonus	for	completing	both	

sessions.		
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Participants	were	asked	to	remember	the	color	of	three	circles	(0.5°	in	radius)	

that	were	evenly	spaced	along	an	invisible	circle	(3.5°	in	radius)	centered	on	a	fixation	

cross.	There	were	180	colors	evenly	distributed	in	a	circle	cut	out	from	the	CIE	L*a*b*	

color	space	(centered	at	L=54,	a=18,	b=-8,	with	a	radius	of	59).		

The	timeline	of	each	trial	(Figure	1)	began	with	the	brief	presentation	of	colorful	

circles	for	600	ms.	A	blank	screen	(except	for	the	fixation	cross)	of	1	s	or	10	s	appeared	

after	the	stimulus.	The	response	screen	appeared	after	the	retention	interval	and	

remained	visible	until	a	response	was	made.	The	screen	consisted	of	a	solid	white	circle	

(0.5°	radius)	at	the	(randomly	selected)	tested	location	and	hollow	circles	at	the	

untested	locations.	A	circular	color	wheel	(6°	radius)	surrounded	the	item	display	and	

had	a	black	selection	bar	on	the	outside	of	the	wheel.	The	position	of	the	selection	bar	

matched	the	angular	position	of	the	mouse	with	respect	to	fixation.	When	participants	

moved	the	mouse,	the	selection	bar	moved	to	indicate	the	currently	selected	color.	In	

addition,	the	tested	item’s	color	would	update	to	the	chosen	color	once	the	mouse	was	

moved.	This	was	to	provide	an	additional	cue	of	the	selected	color.	Participants	were	

instructed	to	click	the	mouse	when	they	had	selected	the	color	that	matched	the	item	at	

that	location	during	stimulus	presentation.	The	response	screen	remained	until	

participants	made	a	response.	A	1	s	interval	separated	trials.	The	two	retention-interval	

conditions	were	randomly	intermixed	within	blocks	of	trials.	Participants	completed	300	

trials	for	each	retention	condition,	600	trials	in	total.		
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Figure 1: Trial timeline for the experiment. Participants were to remember the color of circles for either 1 s or 10 s.  

	

	

Figure 2: A: Frequency distributions of the error responses for all participants for the short (top) and long (bottom) 
retention intervals. The frequency distributions were fit with a weighted mixture of a circular normal and a uniform 
distribution (solid lines) separately for the short (top; green) and long (below; red) retention intervals. B: The fitted 
models for the short (green) and long (red) retention intervals are overlaid to highlight differences in shape of the 
distributions for the two conditions.  
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Figure 3: We performed a resampling analysis to determine the expected p-value distribution for differences in 
memory quality if our study had only 150 trials per condition, as in Zhang & Luck (2009), as opposed to the 300 
trials per condition in our study. We performed 2000 bootstrap samples. For each resample, we selected 150 trials at 
random from each participant, separately for each retention interval. These data were fit by a mixture model to get 
quality estimates for each participant. For each resample, we compared the quality estimates for the retention 
intervals using a paired t-test. The gray bars show the frequency of p values for this resampling analysis. The p value 
of 0.10 found by Zhang & Luck (2009) (solid black line) falls within our resampled distribution, showing no 
evidence for large differences in data between the studies. 

	

Results	and	Discussion	

	

Changes	in	memory	over	time	

Consistent	with	past	work,	performance	in	the	memory	task	was	worse	at	longer	

durations,	with	an	average	absolute	error	(offset	between	the	response	and	the	true	

value,	in	degrees)	of	28.5°	at	1	s	and	36.1°	at	10	s,	t(11)	=	6.53,	p	<	0.001		(paired	sample	

t-test).	While	the	increase	in	error	demonstrates	that	memory	worsens	over	time,	it	

does	not	tell	us	whether	memories	become	less	accurate	or	die	off.	Fortunately,	we	can	

use	an	analytical	technique	known	as	mixture	modeling	to	decompose	the	error	

distribution	into	two	kinds	of	error	(Zhang	&	Luck,	2008).	In	this	approach,	the	error-

frequency	distributions	of	all	trials	in	each	retention	condition	(Figure	2)	are	used	to	fit	a	

model	with	built-in	assumptions	about	how	errors	are	generated.	The	model	used	by	

Zhang	&	Luck	(2009)	assumed	that	participants	either	remember	an	item	with	a	certain	
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quality	(in	which	case	the	responses	accord	with	a	circular	normal	distribution)	or	that	

an	item	is	not	stored	(in	which	case	the	responses	are	guesses—uniform	over	the	space	

of	errors).	Critically,	different	changes	to	memory	will	produce	different	expected	

shapes	in	the	error	distribution.	A	decrease	in	memory	precision	should	produce	a	wider	

distribution	peaked	at	the	true	value.	An	increase	in	guesses	will	uniformly	increase	all	

error	values.	In	line	with	Zhang	&	Luck	(2009),	we	modeled	each	error	distributions	as	a	

weighted	mixture	of	a	uniform	and	a	circular	normal	distribution	(the	model	was	fit	

separately	for	each	participant	and	condition).	This	model	had	3	parameters—the	

mixture	parameter	(weight	of	uniform	distribution),	a	standard	deviation	parameter	

(width	of	the	circular	normal	distribution),	and	a	bias	parameter	μ	(the	offset	of	the	

circular	normal	distribution’s	mean	relative	to	the	true	value).	The	μ	parameter	did	not	

differ	across	conditions	and	was	not	considered	further.	Data	were	fit	using	the	

MemToolbox	(Suchow,	Brady,	Fougnie,	&	Alvarez,	2013).	Importantly,	an	increased	

guess	rate	is	consistent	with	memory	death,	while	a	greater	standard	deviation	would	

reflect	changes	in	memory	quality.		

We	found	more	random	responses	in	the	10	s	condition	(20.0%	at	1	s	and	27.2%	

at	10	s;	t(11)	=	3.86,	p	<	.005;	Figure	2A),	consistent	with	memories	failing	over	time.	We	

also	found	worse	memory	precision	(increase	in	standard	deviation	estimate)	for	the	10	

s	condition	(18.1°	at	1	s	and	21.7°	at	10	s	t(11)	=	2.76,	p	=	.02),	suggesting	a	cost	in	

memory	quality	over	time.	Similar	results	were	found	using	alternative	models	of	

memory.	Using	a	mixture	model	that	allowed	precision	to	vary	across	trials	(Fougnie	et	

al.,	2012;	see	also	van	den	Berg	et	al.,	2012)	we	found	higher	random	responses	(18.7%	
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vs.	25.5%;	p	<	0.005;	Figure	2B)	and	worse	precision	(18.8°	vs.	22.9°;	p	<	0.01)	and	no	

differences	in	the	variability	in	precision	(4.1°	vs.	6.0°;	p	<	.21).	In	addition,	we	also	

explored	whether	memory	changes	reflect	a	greater	propensity	to	report	the	wrong	

item	at	the	long	retention	interval	(Bays,	Catalo,	&	Husain,	2009).	However,	when	we	

added	a	swap	parameter	to	the	model,	we	found	a	low	swap	rate,	below	3%,	and	we	

observed	differences	in	guess	rate	(19.7%	vs.	25.5%,	t(11)	=	3.13,	p	<	.01)	and	precision	

(18.1°	vs.	22.0°,	t(11)	=	2.53,	p	=	.05)	between	the	short	and	long	retention	intervals.	

Unlike	Zhang	&	Luck	(2009),	we	found	significant	changes	both	in	guess	rate	and	

in	precision	over	time.	Importantly,	our	data	resembles	theirs.	The	difference	in	our	

conclusions	about	precision	likely	stems	from	the	fact	that	our	study	had	twice	as	many	

trials	per	condition.	Indeed,	if	we	down-sample	the	number	of	trials	per	participant	to	

150,	half	of	our	original	number,	we	find	that	the	p	value	reported	by	Zhang	&	Luck,	

0.10,	is	not	unexpected	given	our	data.	To	show	this	we	conducted	a	resample	analysis	

in	which	we	constructed	2000	resamples	using	a	random	150	errors	from	each	

participant.	We	find	that	the	p	value	reported	by	Zhang	&	Luck	falls	within	the	expected	

range	of	p	values	(Figure	3).	Thus,	there	is	no	evidence	to	conclude	that	the	findings	by	

Zhang	&	Luck	are	inconsistent	with	our	data—they	may	not	have	had	sufficient	power	to	

detect	a	small	change	in	precision.	However,	it	is	fair	to	conclude	that	that	an	increase	in	

random	responses	is	the	most	drastic	change	in	memory	responses,	consistent	with	a	

model	where	memory	death	happens	relatively	suddenly.		

	

Modeling	the	change	in	performance	across	retentions	
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In	the	above	analysis,	we	followed	precedent	by	separately	fitting	models	across	

conditions	and	inferring	the	success	or	failure	of	a	theoretical	model	by	examining	

changes	in	the	parameter	estimates	deemed	most	likely	given	observed	data.	A	more	

principled	and	stronger	test	is	to	build	a	model	that	predicts	how	parameters	change	

across	conditions.	The	Sudden	Death	model	predicts	that,	over	time,	memories	will	fail	

with	no	change	in	individual	memory	quality.	Can	such	a	model	be	fit	simultaneously	to	

data	across	multiple	retention	intervals?	

	 The	original	Sudden	Death	model	implicitly	assumed	that	memories	(within	and	

across	trials)	are	all	the	same	quality.	There	is	now	considerable	evidence	for	variability	

in	memory	quality	(Fougnie	et	al.,	2012;	van	den	Berg	et	al.,	2012).	Fortunately,	

variability	in	memory	quality	can	easily	be	incorporated	into	a	Sudden	Death	model	by	

starting	from	a	theoretical	model	that	is	a	weighted	mixture	of	a	uniform	distribution	

and	a	mixture	of	Gaussian	distributions	(Fougnie	et	al.,	2012).	We	extend	the	model	to	

make	predictions	across	retention	intervals.	To	accomplish	this,	we	include	a	free	

parameter	to	account	for	the	increase	in	memory	failures	we	expect	between	1	and	10s.	

We	leave	this	as	a	free	parameter	because	the	Sudden	Death	model	is	an	attempt	to	

explain	why	failures	occur,	not	the	number	of	failures	in	a	given	time	interval.	The	

model	has	four	parameters—a	guess	rate	(or	mixture	parameter),	two	parameters	

governing	the	distribution	of	memory	quality,	and	a	parameter	accounting	for	the	loss	in	

memory	over	time.		

	 The	Sudden	Death	model	of	Zhang	&	Luck	(2009)	did	not	consider	the	question	

of	which	memories	will	fail,	but	we	must	consider	it	to	predict	how	performance	will	



	 12	

change	across	retention	intervals.	We	generated	two	versions	of	the	Sudden	Death	

model	that	differ	in	how	they	answer	this	question.	In	one	version,	Sudden	Death–

proportional	(SD-P)	(Figure	4),	we	assume	that	memories	fail	with	probability	

proportional	to	the	inverse	of	their	precision	(one	over	the	variance	in	error),	such	that	

less	informative	memories	are	more	prone	to	failure.	As	can	be	seen	in	Figure	6A,	this	

model	makes	the	counter-intuitive	prediction	that	the	average	measurable	memory	

quality	will	increase	over	time.	This	occurs	because	memories	that	are	of	lower	quality	

are	more	likely	to	fail,	removing	them	from	the	estimated	circular	normal	distribution.	

We	also	considered	a	model	(Sudden	Death-random,	SD-R)	(Figure	4)	where	memories	

fail	randomly,	irrespective	of	their	quality.	This	model	predicts	no	change	in	the	shape	of	

the	distribution	of	non-guess	trials	over	time,	only	an	increase	in	guess	responses	

(Figure	6B).	Both	models	predict	that	individual	memories	do	not	change	in	quality	over	

time.		

	

	

Figure 4: Schematics of Sudden Death models. A display of 3 colored items is encoded via three slots with variable 
precision (quality). Here we represent quality as the size of the color in memory (larger implies better precision). We 
have (arbitrarily) assigned red as the most precise and blue as the least precise. After one second, all items are in 
memory. By ten seconds, one item is lost via sudden death. Here we show six outcomes of the memory state at 10 s. 
In the Sudden Death–Proportional model (top, SDP) the item that dies a majority of the time is the least precise item. 
In the Sudden Death–Random model (below, SDR) each item is equally likely to fail. Importantly, the precision of 
remaining items is higher in the SD–P model than the SD–R model (and is also higher than the memory state at 1s).  
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An	alternative	model	

	

The	Sudden	Death	model	(Zhang	&	Luck,	2009)	suggests	that	memory	quality	is	constant	

over	time,	but	that	memories	may	suddenly	fail.	We	propose	an	alternative	model	

where	information	in	memory	is	being	lost	over	time	leading	to	worse	memory	quality.	

Over	time,	the	items	with	the	lowest	information	may	fail,	perhaps	because	there	is	no	

longer	any	information	left.	Memories	may	terminate,	not	with	a	sudden	death,	but	

with	a	whimper.		

	 Specifically,	we	assumed	that	items	in	memory	were	coded	by	a	set	of	noisy	

samples	(sample-based	models;	Bonnel	&	Miller,	1994;	Palmer,	1990).	This	choice	is	

agnostic	to	how	flexibly	information	can	be	allocated	to	objects	(Suchow,	Fougnie,	

Brady,	&	Alvarez,	2014).	Some	models	posit	an	infinite	number	samples	while	others	

assume	only	a	limited	number	of	independent	slots	of	samples	(slots;	Zhang	&	Luck,	

2008).	Rather	than	specify	the	number	of	samples,	we	leave	the	number	of	samples	and	

the	information	content	of	each	sample	as	free	parameters.	These	parameters	jointly	

determine	the	maximum	information	capacity1,	but	they	are	not	the	only	factors	

influencing	memory	performance.	Working	memory	requires	maintaining	perceptual	

information	in	the	absence	of	bottom-up	input.	We	propose	that	information	is	fallible	

and	that	not	all	samples	will	be	available	at	test.	To	represent	this,	in	our	model	each	

sample	is	given	an	equal	and	independent	probability	of	surviving,	a	free	parameter	in	

the	model	(Figure	5).	Thus,	the	content	of	memory	is	not	solely	determined	by	

																																																								
1	We	make	the	simplifying	assumption	that	participants	divide	the	samples	of	information	as	
equally	as	possible	amongst	the	items	to	remember.		
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information	capacity	(.	Indeed,	the	information	content	of	memory	is	set	by	a	number	of	

weighted	coin	flips	where	heads	implies	informational	persistence	of	a	sample.	Memory	

quality	over	trials	is	related	by	a	binomial	distribution,	which	governs	the	probability	of	

the	number	of	samples	that	survive.	This	distribution	predicts	the	expected	distribution	

of	error	since	the	number	of	surviving	samples	is	inversely	proportional	to	response	

variance	(Bonnel	&	Miller,	1994;	Zhang	&	Luck,	2008).	Note	that	our	parameterization	of	

the	model	involves	expected	trade-offs	between	parameters	(e.g.	a	higher	information	

content	but	greater	failure	rate	bears	some	similarity	to	a	state	with	lower	information	

content	but	less	failure	of	samples).	Thus,	the	relationship	between	parameters	

becomes	more	important	and	each	individual	parameter	value,	considered	in	isolation,	

is	less	important.		

	 To	generate	predictions	across	retention	intervals,	we	added	a	fourth	parameter	

to	account	for	the	degradation	in	memory.	Over	time,	we	expect	a	higher	likelihood	of	

sample	failure.	Thus,	the	changes	over	time	should	be	reflected	in	an	increased	failure	

rate	of	samples.	As	with	the	Sudden	Death	model,	we	let	this	be	a	free	parameter	since	

we	do	not	have	an	a	priori	prediction	about	the	amount	of	degradation	that	should	

occur.	Unlike	the	Sudden	Death	model,	this	account	predicts	that	individual	memories	

will	get	worse	over	time,	because	information	is	gradually	lost.	However,	the	end	result	

is	only	a	modest	change	in	the	width	of	the	non-guess	distribution	(Figure	6C),	given	

that	low-quality	memories	at	1	s	are	highly	likely	to	be	removed	from	the	pool	of	

observable	memories	at	10	s,	which	acts	as	a	slight	countermeasure	to	the	worsening	

quality	of	all	memories.	Importantly,	this	model	suggests	that	‘guess’	responses	do	not	
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necessarily	reflect	a	special	state	or	process,	but	that	they	may	be	the	end	result	of	

gradual	memory	degradation.	

	

Model	comparison	

	

We	fit	each	participant’s	data	(including	1	and	10	s	retention	intervals)	to	the	three	

models	(Figure	7	shows	the	error	distributions	estimated	for	each	condition	by	model)	

and	compared	them	using	Akaike’s	Information	Criterion	(corrected;	AICc)	a	measure	of	

goodness-of-fit	that	penalizes	for	the	number	of	free	parameters	(Akaike,	1974;	

Burnham	&	Anderson,	2002).	We	found	a	clear	victory	for	the	DDNC	model	(AICc	

differences	were	4.1	in	favor	of	the	DDNC	model	over	SD-P	and	2.9	over	SD-R).		

The	data	supports	a	model	where	memories	worsen	over	time	and	where	

memory	death	reflects	the	end	result	of	a	degradation	process	rather	then	a	sudden	or	

distinct	process.	We	rejected	two	versions	of	a	Sudden	death	model,	one	in	which	

failures	were	inversely	proportional	to	quality	and	one	in	which	failures	were	unrelated	

to	quality.	For	the	proportional	version	of	the	model	we	had	to	make	an	assumption	

about	how	quality	and	failure	were	related.	Note,	however,	that	any	implementation	

with	greater	failure	for	memories	with	less	information	should	predict	some	form	of	

decrease	in	response	variance	in	remembered	items,	and	will	therefore	not	be	a	

successful	model.	Indeed,	the	Sudden	Death	model	that	assumes	that	failures	are	

unrelated	to	quality	was	more	successful	in	explaining	the	data	then	one	that	assumed	

that	failures	were	proportional	to	uncertainty.		
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Our	model	assumed	discrete	samples	that	can	be	averaged	to	reduce	uncertainty	

about	items	in	memory.	We	chose	this	both	because	it	is	an	influential	and	useful	

framework	for	thinking	about	the	relationship	between	information	and	uncertainty	

(Bonnel	&	Miller,	1994;	Luce,	1977;	Zhang	&	Luck,	2008).	However,	some	may	prefer	to	

think	of	the	units	of	information	as	infinitely	fine,	or	nearly	so.	Indeed,	the	discreteness	

in	our	model	may	be	capturing	the	minimum	information	content	for	a	memory	to	be	

useful	as	opposed	to	the	discretization	of	memory	above	and	beyond	threshold.	Thus,	

there	would	be	large	similarities	between	our	model	and	a	model	with	continuous	

information,	information	loss,	and	a	threshold	of	information,	below	which,	memories	

are	inaccessible	(Brady,	Konkle,	Gill,	Oliva,	&	Alvarez,	2013).		
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Figure 5: A: Schematic of Degradation and Death By Natural Causes model. A display of 3 colored items is encoded 
via 30 noisy samples (10 / item) (slight differences in sample color are meant to convey noise). Each sample is 
volatile, and has some probability of failing. By 1s half of the samples have failed, but the individual retains some 
information about each item. Variability in the quality of the items emerges as a result of how the probabilistic 
failure plays out. By 10s, perhaps only one item remains. The items of poorer quality may drop out, so even 
information if lost from each item, the average quality of the remaining items may not change. This example case is 
meant to demonstrate why quality estimates, taken in isolation, are not useful. The full characterization of the model 
(B) is a distribution of surviving samples (left) that produces a distribution of expected standard deviations when the 
information per sample is taken into account (B). This precision distribution yields an expected error distribution 
for each retention interval (C). The example model here has 10 samples and each sample has an uncertainty that 
would leave to a 30° circular standard deviation. The only change across retention intervals is in the probability of 
sample failure.  
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Figure 6: Example distributions for short (green) and long (red) distributions meant to convey the predicted changes 
to the shape of the error distributions for 3 models: Sudden Death–proportional (SD-P) (A), Sudden Death–random 
(SD-R) (B), and Degradation and Death by Natural Causes (DDNC) (C). To demonstrate effects for similar states, 
each model is given an equivalent state at short retention intervals and a delta parameter that is similar (expected 
change in memory over time). In the Sudden Death–proportional model the selective removal of low quality 
memories produces a distribution that is slightly more concentrated at 0 error. In the Sudden Death–random model 
the loss of memories does not change the shape of the distribution of remembered items. In the Death by Natural 
Causes model items more likely to be lost and remembered less precisely (red distribution is slightly wider) at long 
retentions. Note that the shown memory loss is more than one would expect for our experiment parameters, and is 
meant to illustrate the differences in model predictions by highlighting predictions with an exaggerated effect.  

	

		

Figure 7: The model fitted distributions (using data from all participants) for short (green) and long (red) retention 
conditions for 3 models: Sudden Death–proportional (SD-r) (A), Sudden Death–random (SD-P) (B), and 
Degradation and Death by Natural Causes (DDNC) (C). Only the error distributions for the DDNC model (panel 
C) have more uncertainty during long retention (red), a characteristic found in the true data.  
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Results	and	Discussion	

Despite	our	subjective	impression	that	visual	representations	are	rich	and	detailed,	we	

represent	a	paucity	of	this	information	in	mind	(Noë,	Pessoa,	&	Thompson,	2000;	

O’Regan,	1992;	Simons	&	Chabris,	1999;	Simons	&	Levin,	1997;	Rensink,	2000,	2002).	

This	is	true	even	for	objects	defined	by	simple	visual	features,	such	as	color	or	

orientation	(Luck	&	Vogel,	1997;	Vogel	et	al.,	2001).	Research	has	focused	on	explaining	

these	limits	in	terms	of	a	capacity-limited	store,	with	debates	centered	on	

understanding	its	nature	and	structure	(Alvarez	&	Cavanagh,	2004;	Bays	&	Husain,	2008;	

Bays,	Wu,	&	Husain,	2011;	Fougnie	&	Alvarez,	2011;	Luck	&	Vogel,	1997;	Wilken	&	Ma,	

2004;	Zhang	&	Luck,	2008).	Though	the	storage	metaphor	for	explaining	working	

memory	limitations	has	been	productive,	it	impedes	our	understanding	of	how	the	

processes	of	memory	maintenance	and	degradation	unfold	over	time.	If	limits	to	

memory	are	can	by	explained	by	a	limited	store	of	information		—	analogous	to	a	bucket	

that	will	only	hold	so	much	water	—	then	why	does	memory	performance	drop	as	

retention	intervals	in	working	memory	tasks	increase	(Gold	et	al.,	2005;	Magnussen,	

2000;	Phillips,	1974;	Sperling,	1960;	Vergauwe,	et	al.,	2009;	Yang,	1999)?		

Zhang	and	Luck	(2009)	tackled	this	question	by	analyzing	the	errors	produced	in	

a	color	estimation	task	across	different	retention	intervals.	One	possibility	is	that	

individual	memories	gradually	fade	and	become	less	precise	over	time.	This	possibility	

was	ruled	out	because	the	distribution	of	errors	did	not	grow	wider.	Instead,	worse	

memory	largely	reflected	an	increase	in	responses	spread	across	the	space	of	possible	

errors—a	pattern	consistent	with	a	decrease	in	memory	existence	and	a	corresponding	
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increase	in	random	guesses.	The	authors	concluded	that	memories	are	stable	up	until	

they	die	suddenly.	This	model	attempted	to	answer	how	memories	change	over	time	

and	provided	a	glimpse	of	how	an	information-limited	approach	could	be	extended	to	

understand	memory	limitations	at	different	time	points.		

Here,	we	show	that	the	conclusion	of	the	Sudden	Death	model	is	incorrect—over	

time,	memories	lose	fidelity	and	become	more	imprecise.	Memory	failures	may	be	the	

end	result	of	this	process	of	degradation.	Thus,	the	end	of	our	working	memories	is	

more	akin	to	death	by	natural	causes	then	to	a	sudden,	un-precipitated	event.	

Importantly,	we	are	not	arguing	over	the	shape	of	the	data.	We	similarly	find	large	

changes	in	the	extent	of	what	appear	to	be	randomly	distributed	error	values	and	more	

modest	evidence	for	increases	in	the	width	of	error	distributions.		

The	central	advance	is	how	to	interpret	this	data	in	the	context	of	a	full	

generative	model.	The	Sudden	Death	model	assumes	that	all	memories	are	of	equal	

quality,	and	therefore	never	considers	which	memories	are	dying.	However,	there	is	

now	considerable	evidence	for	variability	in	the	quality	of	individual	memories	both	

from	modeling	continuous-report	data	(Fougnie	et	al.,	2012;	van	den	Burg	et	al.,	2012;	

see	also	Bae,	et	al.,	2014,	2015)	and	from	metacognitive	judgments	about	internal	

uncertainty	(Fougnie	et	al.,	2012;	Rademaker,	Tredway,	&	Tong,	2012)	even	when	

stimulus	factors	are	controlled	(Suchow,	et	al.,	under	review).	Thus,	it	is	imperative	to	

consider	which	memories	are	failing.	If	memories	with	lower	quality	are	more	likely	to	

fail,	this	could	mask	the	ability	to	observe	changes	in	memory	quality	over	time,	since	

we	only	measure	the	quality	of	memories	that	still	exist.	This	issue,	combined	with	the	
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reduced	sensitivity	in	the	Zhang	&	Luck	dataset	(relative	to	ours),	may	have	led	to	an	

incorrect	conclusion	that	memories	do	not	undergo	changes	in	quality	over	time.		

We	performed	model	comparisons	of	versions	of	the	Sudden	Death	model	to	our	

DDNC	model.	Our	model	starts	from	the	assumption	that	information-quality	is	directly	

related	to	the	amount	of	internal	resource	given	to	a	stimulus	(Bonnel	&	Miller,	1994;	

Luce,	1977;	Shaw,	1978;	Palmer,	1990).	We	allow	this	resource	to	be	allocated	in	

discrete,	noisy	samples	that	may	be	averaged	to	reduce	uncertainty	(Bonnel	&	Miller,	

1994;	Zhang	&	Luck,	2008).	But	rather	than	fixing	the	number	of	samples	to	be	small	

(Zhang	&	Luck,	2008),	or	having	information	be	infinitely	divisible	(Huang,	2010),	the	

number	of	samples	and	their	information	capacity	were	free	parameters	in	the	model.	

Critically,	our	model	also	posits	that	information	is	fallible.	Each	sample	was	given	an	

equal	and	independent	probability	of	failing	over	time.	The	model	holds	that	memory	

changes	over	time	can	be	captured	by	increasing	the	probability	of	sample	failure;	over	

time	more	samples	will	have	failed	due	to	the	volatility	of	information.	Interestingly,	we	

found	that	this	model	fit	the	error	data	remarkably	well	and	that	there	was	more	

evidence	for	it	than	for	the	Sudden	Death	models.		

The	idea	that	memories	change	over	time	is	not	new.	Indeed,	there	is	an	

extensive	literature	on	whether	changes	in	memory	reflect	interference	or	decay	(e.g.	

Portrat,	Barrouillet,	&	Camos,	2008;	Cowan,	1999;	Oberauer	&	Lewandowsky,	2008).	

When	we	use	the	term	“degradation”,	we	remain	neutral	on	the	source	of	changes	in	

memory	quality.	However,	in	future	work	it	will	be	important	to	understand	more	about	

why	degradation	occurs	and	what	factors	modulate	it.		
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Here,	we	proposed	a	model	where	memory	failures	arise	from	a	process	of	

degradation	that	may	lead,	probabilistically,	towards	memory	failure.	This	contrasts	

with	the	way	evidence	for	random	guesses	is	often	theoretically	interpreted—as	

evidence	for	some	structural	upper	limit	in	the	number	of	items	that	can	be	

remembered.		An	implication	of	the	fact	that	our	model	can	account	for	the	

experimental	data	is	to	provide	another	plausible	interpretation	of	the	source	of	failures	

in	working	memory	tasks.	Rather	then	implying	that	these	objects	were	never	in	

memory,	and	never	had	any	chance	of	being	there,	the	lack	of	any	(or	very	low)	

information	could	reflect	a	process	whereby	information	is	lost	probabilistically,	

sometimes	resulting	in	individual	memories	that	contain	no	useful	information	by	the	

time	of	test.	A	common	metaphor	for	working	memory	is	a	storage	space	consisting	of	a	

set	of	slots	or	buckets	in	which	information	is	placed—people	make	memory	errors	

because	only	so	much	information	can	be	placed	in	the	buckets.	A	more	appropriate	

metaphor	would	also	consider	whether	the	buckets	might	be	leaky.	This	modification	

acknowledges	that	degradation	plays	a	role	in	memory	performance	(rather	then	just	

storage	limits)	and	affords	a	natural	explanation	of	trial-to-trial	variance	in	memory	

quality	(even	under	conditions	in	which	encoding	and	stimulus	factors	can	be	accounted	

for	Suchow	et	al.,	under	review).		

The	end	goal	for	research	on	working	memory	is	not	just	to	account	for	and	

measure	the	capacity	of	memory,	but	also	to	have	a	generative	model	of	the	process	of	

memory—from	stimulus	encoding	to	response	generation.	Here,	we’ve	expanded	our	

understanding	in	one	critical	way:	by	building	a	more	complete	model	of	how	memories	
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change	over	time.	Having	done	so,	we	find	evidence	that	contradicts	fundamental	

assumptions	about	how	the	process	of	memory	unfolds	and	challenges	existing	ideas	

about	the	nature	of	memory	limits.		
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