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Abstract

The dominant paradigm of experiments in the social and behavioral sciences views an exper-
iment as a test of a theory, where the theory is assumed to generalize beyond the experiment’s
specific conditions. According to this view, which Alan Newell once characterized as “playing
twenty questions with nature,” theory is advanced one experiment at a time, and the integra-
tion of disparate findings is assumed to happen via the scientific publishing process. In this
article, we argue that the process of integration is at best inefficient, and at worst it does
not, in fact, occur. We further show that the challenge of integration cannot be adequately
addressed by recently proposed reforms that focus on the reliability and replicability of indi-
vidual findings, nor simply by conducting more or larger experiments. Rather, the problem
arises from the imprecise nature of social and behavioral theories and, consequently, a lack
of commensurability across experiments conducted under different conditions. Therefore,
researchers must fundamentally rethink how they design experiments and how the experi-
ments relate to theory. We specifically describe an alternative framework, integrative experi-
ment design, which intrinsically promotes commensurability and continuous integration of
knowledge. In this paradigm, researchers explicitly map the design space of possible experi-
ments associated with a given research question, embracing many potentially relevant theories
rather than focusing on just one. Researchers then iteratively generate theories and test them
with experiments explicitly sampled from the design space, allowing results to be integrated
across experiments. Given recent methodological and technological developments, we con-
clude that this approach is feasible and would generate more-reliable, more-cumulative empir-
ical and theoretical knowledge than the current paradigm – and with far greater efficiency.

1. Introduction

You can’t play 20 questions with Nature and win. (Newell, 1973)

Fifty years ago, Allen Newell summed up the state of contemporary experimental psychology
as follows: “Science advances by playing twenty questions with nature. The proper tactic is to
frame a general question, hopefully binary, that can be attacked experimentally. Having settled
that bits-worth, one can proceed to the next … Unfortunately, the questions never seem to be
really answered, the strategy does not seem to work” (italics added for emphasis).

The problem, Newell noted, was a lack of coherence among experimental findings. “We
never seem in the experimental literature to put the results of all the experiments together,”
he wrote, “Innumerable aspects of the situations are permitted to be suppressed. Thus, no
way exists of knowing whether the earlier studies are in fact commensurate with whatever
ones are under present scrutiny, or are in fact contradictory.” Referring to a collection of
papers by prominent experimentalists, Newell concluded that although it was “exceedingly
clear that each paper made a contribution … I couldn’t convince myself that it would
add up, even in thirty more years of trying, even if one had another 300 papers of similar,
excellent ilk.”

More than 20 years after Newell’s imagined future date, his outlook seems, if anything,
optimistic. To illustrate the problem, consider the phenomenon of group “synergy,” defined
as the performance of an interacting group exceeding that of an equivalently sized “nominal
group” of individuals working independently (Hill, 1982; Larson, 2013). A century of
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experimental research in social psychology, organizational psy-
chology, and organizational behavior has tested the performance
implications of working in groups relative to working individually
(Allen & Hecht, 2004; Richard Hackman & Morris, 1975;
Husband, 1940; Schulz-Hardt & Mojzisch, 2012; Tasca, 2021;
Watson, 1928), but substantial contributions can also be found
in cognitive science, communications, sociology, education, com-
puter science, and complexity science (Allport, 1924; Arrow,
McGrath, & Berdahl, 2000; Barron, 2003; Devine, Clayton,
Dunford, Seying, & Pryce, 2001). In spite of this attention across
time and disciplines – or maybe because of it – this body of
research often reaches inconsistent or conflicting conclusions. For
example, some studies find that interacting groups outperform

individuals because they are able to distribute effort (Laughlin,
Bonner, & Miner, 2002), share information about high-quality
solutions (Mason & Watts, 2012), or correct errors (Mao, Mason,
Suri, & Watts, 2016), whereas other studies find that “process
losses” – including social loafing (Harkins, 1987; Karau &
Williams, 1993), groupthink (Janis, 1972), and interpersonal conflict
(Steiner, 1972) – cause groups to underperform their members.

As we will argue, the problem is not that researchers lack the-
oretically informed hypotheses about the causes and predictors of
group synergy; to the contrary, the literature contains dozens, or
possibly even hundreds, of such hypotheses. Rather, the problem
is that because each of these experiments was designed with the
goal of testing a hypothesis but, critically, not with the goal of
explicitly comparing the results with other experiments of the
same general class, researchers in this space have no way to artic-
ulate how similar or different their experiment is from anyone
else’s. As a result, it is impossible to determine – via systematic
review, meta-analysis, or any other ex-post method of synthesis
– how all of the potentially relevant factors jointly determine
group synergy or how their relative importance and interactions
change over contexts and populations.

Nor is group synergy the only topic in the social and behavio-
ral sciences for which one can find a proliferation of irreconcilable
theories and empirical results. For any substantive area of the
social and behavioral sciences on which we have undertaken a sig-
nificant amount of reading, we see hundreds of experiments that
each tests the effects of some independent variables on other
dependent variables while suppressing innumerable “aspects of
the situation.”1 Setting aside the much-discussed problems of rep-
licability and reproducibility, many of these papers are interesting
when read in isolation, but it is no more possible to “put them all
together” today than it was in Newell’s time (Almaatouq, 2019;
Muthukrishna & Henrich, 2019; Watts, 2017).

Naturally, our subjective experience of reading across several
domains of interest does not constitute proof that successful inte-
gration of many independently designed and conducted experi-
ments cannot occur in principle, or even that it has not occurred
in practice. Indeed it is possible to think of isolated examples,
such as mechanism design applied to auctions (Myerson, 1981;
Vickrey, 1961) and matching markets (Aumann & Hart, 1992;
Gale & Shapley, 1962), in which theory and experiment appear
to have accumulated into a reasonably self-consistent, empirically
validated, and practically useful body of knowledge. We believe,
however, that these examples represent rare exceptions and that
examples such as group synergy are far more typical.

We propose two explanations for why not much has changed
since Newell’s time. The first is that not everyone agrees with the
premise of Newell’s critique – that “putting things together” is a
pressing concern for the scientific enterprise. In effect, this view
holds that the approach Newell critiqued (and that remains pre-
dominant in the social and behavioral sciences) is sufficient for
accumulating knowledge. Such accumulation manifests itself indi-
rectly through the scientific publishing process, with each new
paper building upon earlier work, and directly through literature
reviews and meta-analyses. The second explanation for the lack of
change since Newell’s time is that even if one accepts Newell’s pre-
mise, neither Newell nor anyone else has proposed a workable
alternative; hence, the current paradigm persists by default in
spite of its flaws.2

In the remainder of this paper, we offer our responses to the
two explanations just proposed. Section 2 addresses the first
explanation, describing what we call the “one-at-a-time”
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paradigm and arguing that it is poorly suited to the purpose of
integrating knowledge over many studies in large part because it
was not designed for that purpose. We also argue that existing
mechanisms for integrating knowledge, such as systematic reviews
and meta-analyses, are insufficient on the grounds that they, in
effect, assume commensurability. If the studies that these methods
are attempting to integrate cannot be compared with one another,
because they were not designed to be commensurable, then there
is little that ex-post methods can do.3 Rather, an alternative
approach to designing experiments and evaluating theories is
needed. Section 3 addresses the second explanation by describing
such an alternative, which we call the “integrative” approach, that
is explicitly designed to integrate knowledge about a particular
problem domain. Although integrative experiments of the sort
we describe may not have been possible in Newell’s day, we
argue that they can now be productively pursued in parts of the
social and behavioral sciences thanks to increasing theoretical
maturity and methodological developments. To illustrate this
point, section 4 illustrates the potential of the integrative approach
by describing three experiments that are first steps in its direction.
Finally, section 5 outlines questions and concerns we have
encountered and offers our response.

2. The “one-at-a-time” paradigm

In the simplest version of what we call the “one-at-a-time”
approach to experimentation, a researcher poses a question
about the relation between one independent and one dependent
variable and then offers a theory-motivated hypothesis that the
relation is positive or negative. Next, the researcher devises an
experiment to test this hypothesis by introducing variability in
the independent variable, aiming to reject the “null hypothesis”
that the proposed dependency does not exist on the basis of the
evidence, quantified by a p-value. If the null hypothesis is success-
fully rejected, the researcher concludes that the experiment corrob-
orates the theory and then elaborates on potential implications,
both for other experiments and for phenomena outside the lab.

In practice, one-at-a-time experiments can be considerably
more complex. The researcher may articulate hypotheses about
more than one independent variable, more than one dependent
variable, or both. The test itself may focus on effect sizes or con-
fidence intervals rather than statistical significance, or it may
compare two or more competing hypotheses. Alternatively, both
the hypothesis and the test may be qualitative in nature.
Regardless, each experiment tests at most a small number of the-
oretically informed hypotheses in isolation by varying at most a
small number of parameters. By design, all other factors are
held constant. For example, a study of the effect of reward or pun-
ishment on levels of cooperation typically focuses on the manipu-
lation of theoretical interest (e.g., introducing a punishment stage
between contribution rounds in a repeated game) while holding
fixed other parameters, such as the numerical values of the payoffs
or the game’s length (Fehr & Gachter, 2000). Similarly, a study of
the effect of network structure on group performance typically
focuses on some manipulation of the underlying network while
holding fixed the group size or the time allotted to perform the
task (Almaatouq et al., 2020; Becker, Brackbill, & Centola, 2017).

2.1. The problem with the one-at-a-time paradigm

As Newell himself noted, this approach to experimentation seems
reasonable. After all, the sequence of question→ theory→

hypothesis→ experiment→ analysis→ revision to theory→ repeat
appears to be almost interchangeable with the scientific method
itself. Nonetheless, the one-at-a-time paradigm rests on an impor-
tant but rarely articulated assumption: That because the research-
er’s purpose in designing an experiment is to test a theory of
interest, the only constructs of interest are those that the theory
itself explicitly articulates as relevant. Conversely, where the the-
ory is silent, the corresponding parameters are deemed to be
irrelevant. According to this logic, articulating a precise theory
leads naturally to a well-specified experiment with only one, or at
most a few, constructs in need of consideration. Correspondingly,
theory can aid the interpretation of the experiment’s results –
and can be generalized to other cases (Mook, 1983; Zelditch, 1969).

Unfortunately, while such an assumption may be reasonable in
fields such as physics, it is rarely justified in the social and behav-
ioral sciences (Debrouwere & Rosseel, 2022; Meehl, 1967). Social
and behavioral phenomena exhibit higher “causal density” (or
what Meehl called the “crud factor”) than physical phenomena,
such that the number of potential causes of variation in any out-
come is much larger than in physics and the interactions among
these causes are often consequential (Manzi, 2012; Meehl, 1990b).
In other words, the human world is vastly more complex than the
physical one, and researchers should be neither surprised nor
embarrassed that their theories about it are correspondingly less
precise and predictive (Watts, 2011). The result is that theories
in the social and behavioral sciences are rarely articulated with
enough precision or supported by enough evidence for research-
ers to be sure which parameters are relevant and which can be
safely ignored (Berkman & Wilson, 2021; Meehl, 1990b; Turner
& Smaldino, 2022; Yarkoni, 2022). Researchers working indepen-
dently in the same domain of inquiry will therefore invariably
make design choices (e.g., parameter settings, subject pools) dif-
ferently (Breznau et al., 2022; Gelman & Loken, 2014).
Moreover, because the one-at-a-time paradigm is premised on
the (typically unstated) assumption that theories dictate the
design of experiments, the process of making design decisions
about constructs that are not specified under the theory being
tested is often arbitrary, vague, undocumented, or (as Newell
puts it) “suppressed.”

2.2. The universe of possible experiments

To express the problem more precisely, it is useful to think of a
one-at-a-time experiment as a sample from an implicit universe
of possible experiments in a domain of inquiry. Before proceed-
ing, we emphasize that neither the sample nor the universe is typ-
ically acknowledged in the one-at-a-time paradigm. Indeed, it is
precisely the transition from implicit to explicit construction of
the sampling universe that forms the basis of the solution we
describe in the next section.

In imagining such a universe, it is useful to distinguish the
independent variables needed to define the effect of interest –
the experimental manipulation – from the experiment’s context.
We define this context as the set of independent variables that
are hypothesized to moderate the effect in question as well as
the nuisance parameters (which, strictly speaking, are also inde-
pendent variables) over which the effect is expected to generalize
and that correspond to the design choices the researcher makes
about the specific experiment that will be conducted. For example,
an experiment comparing the performance of teams to that of
individuals not only will randomize participants into a set of
experimental conditions (e.g., individuals vs. teams of varying
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sizes), but will also reflect decisions about other contextual fea-
tures, including, for example, the specific tasks on which to com-
pare performance, where each task could then be parameterized
along multiple dimensions (Almaatouq, Alsobay, Yin, & Watts,
2021a; Larson, 2013). Other contextual choices include the incen-
tives provided to participants, time allotted to perform the task,
modality of response, and so on. Similarly, we define the popula-
tion of the experiment as a set of measurable attributes that char-
acterize the sample of participants (e.g., undergraduate women in
the United States aged 18–23 with a certain distribution of cogni-
tive reflection test scores). Putting all these choices together, we
can now define an abstract space of possible experiments, the
dimensions of which are the union of the context and population.
We call this space the design space on the grounds that every con-
ceivable design of the experiment is describable by some choice of
parameters that maps to a unique point in the space.4 (Although
this is an abstract way of defining what we mean by the experi-
ment design space, we will suggest concrete and practical ways
of defining it later in the article.)

Figure 1 shows a simplified rendering of a design space and
illustrates several important properties of the one-at-a-time para-
digm. Figure 1A shows a single experiment conducted in a partic-
ular context with a particular sample population. The color of the

point represents the “result” of the experiment: The effect of one
or more independent variables on some dependent variable. In
the absence of a theory, nothing can be concluded from the exper-
iment alone, other than that the observed result holds for one par-
ticular sample of participants under one particular context. From
this observation, the appeal of strong theory becomes clear: By
framing an experiment as a test of a theory, rather than as a mea-
surement of the relationship between dependent and independent
variables (Koyré, 1953), the observed results can be generalized
well beyond the point in question, as shown in Figure 1B. For
example, while a methods section of an experimental paper
might note that the participants were recruited from the subject
pool at a particular university, it is not uncommon for research
articles to report findings as if they apply to all of humanity
(Henrich, Heine, & Norenzayan, 2010). According to this view,
theories (and in fields such as experimental economics, formal
models) are what help us understand the world, whereas experi-
ments are merely instruments that enable researchers to test the-
ories (Lakens, Uygun Tunç, & Necip Tunç, 2022; Levitt & List,
2007; Mook, 1983; Zelditch, 1969).

As noted above, however, we rarely expect theories in the social
and behavioral sciences to be universally valid. The ability of the
theory in question to generalize the result is therefore almost

Figure 1. Implicit design space. Panel A depicts a single experiment (a single point) that generates a result in a particular sample population and context; the
point’s color represents a relationship between variables. Panel B depicts the expectation that results will generalize over broader regions of conditions. Panel
C shows a result that applies to a bounded range of conditions. Panel D illustrates how isolated studies about specific hypotheses can reach inconsistent conclu-
sions, as represented by different-colored points.
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always limited to some region of the design space that includes the
sampled point but not the entire space, as shown in Figure 1C.
While we expect that most researchers would acknowledge that
they lack evidence for unconstrained generality over the popula-
tion, it is important to note that there is nothing special about
the subjects. In principle, what goes for subjects also holds for
contexts (Simons, Shoda, & Lindsay, 2017; Yarkoni, 2022).
Indeed, as Brunswik long ago observed, “…proper sampling of
situations and problems may in the end be more important
than proper sampling of subjects, considering the fact that indi-
viduals are probably on the whole much more alike than are sit-
uations among one another” (Brunswik, 1947).

Unfortunately, because the design space is never explicitly con-
structed, and hence the sampled point has no well-defined loca-
tion in the space, the one-at-a-time paradigm cannot specify a
proposed domain of generalizability. Instead, any statements
regarding “scope” or “boundary” conditions for a finding are
often implicit and qualitative in nature, leaving readers to assume
the broadest possible generalizations. These scope conditions may
appear in an article’s discussion section but typically not in its
title, abstract, or introduction. Rarely, if ever, is it possible to pre-
cisely identify, based on the theory alone, over what domain of the
design space one should expect an empirical result to hold
(Cesario, 2014, 2022).

2.3. Incommensurability leads to irreconcilability

Given that the choices about the design of experiments are not
systematically documented, it becomes impossible to establish
how similar or different two experiments are. This form of incom-
mensurability, whereby experiments about the same effect of
interest are incomparable, generates a pattern like that shown in
Figure 1D, where inconsistent and contradictory findings appear
in no particular order or pattern (Levinthal & Rosenkopf, 2021). If
one had a metatheory that specified precisely under what condi-
tions (i.e., over what region of parameter values in the design
space) each theory should apply, it might be possible to reconcile
the results under that metatheory’s umbrella, but rarely do such
metatheories exist (Muthukrishna & Henrich, 2019). As a result,
the one-at-a-time paradigm provides no mechanism by which to
determine whether the observed differences (a) are to be expected
on the grounds that they lie in distinct subdomains governed by
different theories, (b) represent a true disagreement between com-
peting theories that make different claims on the same subdo-
main, or (c) indicate that one or both results are likely to be
wrong and therefore require further replication and scrutiny. In
other words, inconsistent findings arising in the research litera-
ture are essentially irreconcilable (Almaatouq, 2019;
Muthukrishna & Henrich, 2019; Van Bavel, Mende-Siedlecki,
Brady, & Reinero, 2016; Watts, 2017; Yarkoni, 2022).

Critically, the absence of commensurability also creates serious
problems for existing methods of synthesizing knowledge such as
systematic reviews and meta-analyses. As all these methods are
post-hoc, meaning that they are applied after the studies in ques-
tion have been completed, they are necessarily reliant on the
designs of the experiments they are attempting to integrate. If
those designs do not satisfy the property of commensurability
(again, because they were never intended to), then ex-post meth-
ods are intrinsically limited in how much they can say about
observed differences. A concrete illustration of this problem has
emerged recently in the context of “nudging” due to the publica-
tion of a large meta-analysis of over 400 studies spanning a wide

range of contexts and interventions (Mertens, Herberz, Hahnel, &
Brosch, 2022). The paper was subsequently criticized for failing to
account adequately for publication bias (Maier et al., 2022), the
quality of the included studies (Simonsohn, Simmons, &
Nelson, 2022), and their heterogeneity (Szaszi et al., 2022).
While the first two of these problems can be addressed by pro-
posed reforms in science, such as universal registries of study
designs (which are designed to mitigate publication bias) and
adoption of preanalysis plans (which are specified to improve
study quality), the problem of heterogeneity requires a framework
for expressing study characteristics in a way that is commensurate.
If two studies are different, that is, a meta-analysis is left with no
means to incorporate information from both of them that prop-
erly accounts for their differences. Thus, while meta-analyses
(and reviews more generally) can acknowledge the importance
of moderating variables, they are inherently limited in their ability
to do so by the commensurability of the underlying studies.

Finally, we note that the lack of commensurability is also
unaddressed by existing proposals to improve the reliability of sci-
ence by, for example, increasing sample sizes, calculating effect
sizes rather than measures of statistical significance, replicating
findings, or requiring preregistered designs. Although these prac-
tices can indeed improve the reliability of individual findings, they
are not concerned directly with the issue of how many such find-
ings “fit together” and hence do not address our fundamental
concern with the one-at-a-time framework. In other words, just
as Newell claimed 50 years ago, improving the commensurability
of experiments – and the theories they seek to test – will require a
paradigmatic shift in how we think about experimental design.

3. From one-at-a-time to integrative by design

We earlier noted that a second explanation for the persistence of
the one-at-a-time approach is the lack of any realistic alternative.
Even if one sees the need for a “paradigmatic shift in how we
think about experimental design,” it remains unclear what that
shift would look like and how to implement it. To address this
issue, we now describe an alternative approach, which we call “inte-
grative” experimentation, that can resolve some of the difficulties
described previously. In general terms, the one-at-a-time approach
starts with a single, often very specific, theoretically informed
hypothesis. In contrast, the integrative approach starts from the
position of embracing many potentially relevant theories: All
sources of measurable experimental-design variation are potentially
relevant, and decisions about which parameters are relatively more
or less important are to be answered empirically. The integrative
approach proceeds in three phases: (1) Constructing a design
space, (2) sampling from the design space, and (3) building theories
from the resulting data. The rest of this section elucidates these
three main conceptual components of the integrative approach.

3.1. Constructing the design space

The integrative approach starts by explicitly constructing the
design space. Experiments that have already been conducted
can then be assigned well-defined coordinates, whereas those
not yet conducted can be identified as as-yet-unsampled points.
Critically, the differences between any pair of experiments that
share the same effect of interest – whether past or future – can
be determined; thus, it is possible to precisely identify the similar-
ities and differences between two designs. In other words, com-
mensurability is “baked in” by design.
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How should the design space be constructed in practice? The
method will depend on the domain of interest but is likely to
entail a discovery stage that identifies candidate dimensions
from the literature. Best practices for constructing the design
space will emerge with experience, giving birth to a new field of
what we tentatively label “research cartography”: The systematic
process of mapping out research fields in design spaces. Efforts
in research cartography are likely to benefit from and contribute
to ongoing endeavors to produce formal ontologies in social and
behavioral science research and other disciplines, in support of a
more integrative science (Larson & Martone, 2009; Rubin et al.,
2006; Turner & Laird, 2012).

To illustrate this process, consider the phenomenon of group
synergy discussed earlier. Given existing theory and decades of
experiments, one might expect the existence and strength of
group synergy to depend on the task: For some tasks, interacting
groups might outperform nominal groups, whereas for others, the
reverse might hold. In addition, synergy might (or might not) be
expected depending on the specific composition of the group:
Some combinations of skills and other individual attributes
might lead to synergistic performance; other combinations
might not. Finally, group synergy might depend on “group pro-
cesses,” defined as variables such as the communications technol-
ogy or incentive structure that affect how group members interact
with one another, but which are distinct both from the individuals
themselves and their collective task.

Given these three broad sources of variation, an integrative
approach would start by identifying the dimensions associated
with each, as suggested either by prior research or some other
source of insight such as practical experience. In this respect,
research cartography resembles the process of identifying the
nodes of a nomological network (Cronbach & Meehl, 1955;
Preckel & Brunner, 2017) or the dimensions of methodological
diversity for a meta-analysis (Higgins, Thompson, Deeks, &
Altman, 2003); however, it will typically involve many more
dimensions and require the “cartographer” to assign numerical
coordinates to each “location” in the space. For example, the lit-
erature on group performance has produced several well-known
task taxonomies, such as those by Shaw (1963), Hackman
(1968), Steiner (1972), McGrath (1984), and Wood (1986).
Task-related dimensions of variation (e.g., divisibility, complexity,
solution demonstrability, and solution multiplicity) would be
extracted from these taxonomies and used to label tasks that
have appeared in experimental studies of group performance.
Similarly, prior work has variously suggested that group perfor-
mance depends on the composition of the group with respect
to individual-level traits as captured by, say, average skill (Bell,
2007; Devine & Philips, 2001; LePine, 2003; Stewart, 2006), skill
diversity (Hong & Page, 2004; Page, 2008), gender diversity
(Schneid, Isidor, Li, & Kabst, 2015), social perceptiveness
(Engel, Woolley, Jing, Chabris, & Malone, 2014; Kim et al.,
2017; Woolley, Chabris, Pentland, Hashmi, & Malone, 2010),
and cognitive-style diversity (Aggarwal & Woolley, 2018;
Ellemers & Rink, 2016), all of which could be represented as
dimensions of the design space. Finally, group-process variables
might include group size (Mao et al., 2016), properties of the
communication network (Almaatouq, Rahimian, Burton, &
Alhajri, 2022; Becker et al., 2017; Mason & Watts, 2012), and
the ability of groups to reorganize themselves (Almaatouq et al.,
2020). Together, these variables might identify upward of 50
dimensions that define a design space of possible experiments
for studying group synergy through integrative experiment design,

where any given study should, in principle, be assignable to one
unique point in the space.5

As this example illustrates, the list of possibly relevant variables
can be long, and the dimensionality of the design space can there-
fore be large. Complicating matters, we do not necessarily know
up front which of the many variables are in fact relevant to the
effects of interest. In the example of group synergy, for instance,
even an exhaustive reading of the relevant literature is not guaran-
teed to reveal all the ways in which tasks, groups, and group pro-
cesses can vary in ways that meaningfully affect synergy.
Conversely, there is no guarantee that all, or even most, of the
dimensions chosen to represent the design space will play any
important role in generating synergy. As a result, experiments
that map to the same point in the design space could yield differ-
ent results (because some important dimension is missing from
the representation of the space), while in other cases, experiments
that map to very different points yield indistinguishable behavior
(because the dimensions along which they differ are irrelevant).

Factors such as these complicate matters in practice but do not
present a fundamental problem to the approach described here.
The integrative approach does not require the initial configuration
of the space to be correct or its dimensionality to be fixed. Rather,
the dimensionality of the space can be learned in parallel with
theory construction and testing. Really, the only critical require-
ment for constructing the design space is to do it explicitly and sys-
tematically by identifying potentially relevant dimensions (either
from the literature or from experience, including any known
experiments that have already been performed) and by assigning
coordinates to individual experiments along all identified dimen-
sions. Using this process of explicit, systematic mapping of
research designs to points in the design space (research cartogra-
phy), the integrative approach ensures commensurability. We
next will describe how the approach leverages commensurability
to produce integrated knowledge in two steps: Via sampling,
and via theory construction and testing.

3.2. Sampling from the design space

An important practical challenge to integrative experiment design
is that the size of the design space (i.e., the number of possible
experiments) increases exponentially with the number of identi-
fied dimensions D. To illustrate, assume that each dimension
can be represented as a binary variable (0, 1), such that a given
experiment either exhibits the property encoded in the dimension
or does not. The number of possible experiments is then 2D.
When D is reasonably small and experiments are inexpensive to
run, it may be possible to exhaustively explore the space by con-
ducting every experiment in a full factorial design. For example,
when D = 8, there are 256 experiments in the design space, a
number that is beyond the scale of most studies in the social
and behavioral sciences but is potentially achievable with recent
innovations in crowdsourcing and other “high-throughput”meth-
ods, especially if distributed among a consortium of labs
(Byers-Heinlein et al., 2020; Jones et al., 2021). Moreover, running
all possible experiments may not be necessary: If the goal is to
estimate the impact that each variable has, together with their
interactions, a random (or more efficient) sample of the experi-
ments can be run (Auspurg & Hinz, 2014). This sample could
also favor areas where prior work suggests meaningful variation
will be observed. Using these methods, together with large sam-
ples, it is possible to run studies for higher values of D
(e.g., 20). Section 4 describes examples of such studies.
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Exhaustive and random sampling are both desirable because
they allow unbiased evaluation of hypotheses that are not tethered
to the experimental design – there is no risk of looking only at
regions of the space that current hypotheses favor (Dubova,
Moskvichev, & Zollman, 2022), and no need to collect more
data from the design space because the hypotheses under consid-
eration change. But as the dimensionality increases, exhaustive
and random sampling quickly becomes infeasible. When D is
greater than 20, the number of experiment designs grows to
over 1 million, and when D = 30, it is over 1 billion. Given that
the dimensionality of design spaces for even moderately complex
problems could easily exceed these numbers, and that many
dimensions will be not binary but ternary or greater, integrative
experiments will require using different sampling methods.

Fortunately, there already exist a number of methods that
enable researchers to efficiently sample high-dimensional design
spaces (Atkinson & Donev, 1992; McClelland, 1997; Smucker,
Krzywinski, & Altman, 2018; Thompson, 1933). For example,
one contemporary class of methods is “active learning,” an
umbrella term for sequential optimal experimental-design strate-
gies that iteratively select the most informative design points to
sample.6 Active learning has become an important tool in the
design of A/B tests in industry (Letham, Karrer, Ottoni, &
Bakshy, 2019) and, more recently, of behavioral experiments in
the lab (Balietti, Klein, & Riedl, 2021).7 Most commonly, an active
learning process begins by conducting a small number of ran-
domly selected experiments (i.e., points in the design space)
and fitting a surrogate model to the outcome of these experiments.
As we later elucidate, one can think of the surrogate model as a
“theory” that predicts the outcome of all experiments in the
design space, including those that have not been conducted.
Then, a sampling strategy (also called an “acquisition function,”
“query algorithm,” or “utility measure”) selects a new batch of
experiments to be conducted according to the value of potential
experiments. Notably, the choice of a surrogate model and sam-
pling strategy is flexible, and the best alternative to choose will
depend on the problem (Eyke, Koscher, & Jensen, 2021).8

We will not explore the details of these methods or their
implementation,9 as this large topic has been – and continues
to be – extensively developed in the machine-learning and statis-
tics communities.10 For the purpose of our argument, it is

necessary only to convey that systematic sampling from the design
space allows for unbiased evaluation of hypotheses (see Fig. 2A)
and can leverage a relatively small number of sampled points in
the design space to make predictions about every point in the
space, the vast majority of which are never sampled (see
Fig. 2B). Even so, by iteratively evaluating the model against
newly sampled points and updating it accordingly, the model
can learn about the entire space, including which dimensions
are informative. As we explain next, this iterative process will
also form the basis of theory construction and evaluation.

3.3. Building and testing theories

Much like in the one-at-a-time paradigm, the ultimate goal of
integrative experiment design is to develop a reliable, cohesive,
and cumulative theoretical understanding. However, because the
integrative approach constructs and tests theories differently, the
theories that tend to emerge from it depart from the traditional
notion of theory in two regards. First, the shift to integrative
experiments will change our expectations about what theories
look like (Watts, 2014, 2017), requiring researchers to focus less
on proposing novel theories that seek to differentiate themselves
from existing theories by identifying new variables and their
effects, and more on identifying theory boundaries, which may
involve many known variables working together in complex
ways. Second, although traditional theory development distin-
guishes sharply between basic and applied research, integrative
theories will lend themselves to a “use-inspired” approach in
which basic and applied science are treated as complements rather
than as substitutes where one necessarily drives out the other
(Stokes, 1997; Watts, 2017). We now describe each of these adap-
tations in more detail.

3.3.1. Integrating and reconciling existing theories
As researchers sample experiments that cover more of the design
space, simple theories and models that explain behavior with sin-
gular factors will no longer be adequate because they will fail to
generalize. From a statistical perspective, the “bias-variance trade-
off” principle identifies two ways a model (or theory) can fail to
generalize: It can be too simple and thus unable to capture trends
in the observed data, or too complex, overfitting the observed data

Figure 2. Explicit design space. Panel A shows that systematically sampling the space of possible experiments can reveal contingencies, thereby increasing the
integrativeness of theories (as shown in panel B). Panel C depicts that what matters most is the overlap between the most practically useful conditions and
domains defined by theoretical boundaries. The elephants in panels B and C represent the bigger picture that findings from a large number of experiments
allow researchers to discern, but which is invisible to those from situated theoretical and empirical positions.
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and manifesting great variance across datasets (Geman,
Bienenstock, & Doursat, 1992). However, this variance decreases
as the datasets increase in size and breadth, making oversimplifi-
cation and reliance on personal intuitions more-likely causes of
poor generalization. As a consequence, we must develop new
kinds of theories – or metatheories – that capture the complexity
of human behaviors while retaining the interpretability of simpler
theories.11 In particular, such theories must account for variation
in behavior across the entire design space and will be subject to
different evaluation criteria than those traditionally used in the
social and behavioral sciences.

One such criterion is the requirement that theories generate
“risky” predictions, defined roughly as quantitative predictions
about as-yet unseen outcomes (Meehl, 1990b; Yarkoni, 2022).
For example, in the “active sampling” approach outlined above,
the surrogate model encodes prior theory and experimental
results into a formal representation that (a) can be viewed as an
explanation of all previously sampled experimental results and
(b) can be queried for predictions treated as hypotheses. This
dual status of the surrogate model as both explanation and predic-
tion (Hofman et al., 2021; Nemesure, Heinz, Huang, & Jacobson,
2021; Yarkoni & Westfall, 2017) distinguishes it from the tradi-
tional notion of hypothesis testing. Rather than evaluating a the-
ory based on how well it fits existing (i.e., in-sample) experimental
data, the surrogate model is continually evaluated on its ability to
predict new (i.e., out-of-sample) experimental data. Moreover,
once the new data have been observed, the model is updated to
reflect the new information, and new predictions are generated.

We emphasize that the surrogate model from the active learn-
ing approach is just one way to generate, test, and learn from risky
predictions. Many other approaches also satisfy this criterion. For
example, one might train a machine-learning model other than
the surrogate model to estimate heterogeneity of treatment effects
and to discover complex structures that were not specified in
advance (Wager & Athey, 2018). Alternatively, one could use an
interpretable, mechanistic, model. The only essential require-
ments for an integrative model are that it leverages the commen-
surability of the design space to in some way (a) accurately explain
data that researchers have already observed, (b) make predictions
about as-yet-unseen experiments, and then, having run those
experiments, and (c) integrate the newly learned information to
improve the model. If accurate predictions are achievable across
some broad domain of the design space, the model can then be
interpreted as supporting or rejecting various theoretical claims
in a context-population-dependent way, as illustrated schemati-
cally in Figure 2B. Reflecting Merton’s (1968) call for “theories
of the middle range,” a successful metatheory could identify the
boundaries between empirically distinct regions of the design
space (i.e., regions where different observed answers to the same
research question pertain), making it possible to precisely state
under what conditions (i.e., for which ranges of parameter values)
one should expect different theoretically informed results to apply.

If accurate predictions are unachievable even after an arduous
search, the result is not a failure of the integrative framework.
Rather, it would be an example of the framework’s revealing a fun-
damental limit to prediction and, hence, explanation (Hofman,
Sharma, & Watts, 2017; Martin, Hofman, Sharma, Anderson, &
Watts, 2016; Watts et al., 2018).12 In the extreme, when no point
in the space is informative of any other point, generalizations of
any sort are unwarranted. In such a scenario, applied research
might still be possible, for example, by sampling the precise point
of interest (Manzi, 2012), but the researcher’s drive to attain a

generalizable theoretical understanding of a domain of inquiry
would be exposed as fruitless. Such an outcome would be disap-
pointing, but from a larger scientific perspective, it is better to
know what cannot be known than to believe in false promises.
Naturally, whether such outcomes arise – and if so, how frequently
– is itself an empirical question that the proposed framework could
inform. With sufficient integrative experiments over many
domains, the framework might yield a “meta-metatheory” that cla-
rifies under which conditions one should (or should not) expect to
find predictively accurate metatheories.

3.3.2. Bridging scientific and pragmatic knowledge
Another feature of integrative theories is that they will lend them-
selves to a “use-inspired” approach. Practitioners and researchers
alike generally acknowledge that no single intervention, however
evidence-based, benefits all individuals in all circumstances (i.e.,
across populations and contexts) and that overgeneralization
from lab experiments in many areas of behavioral science can
(and routinely does) lead practitioners and policymakers to
deploy suboptimal and even dangerous real-world interventions
(Brewin, 2022; de Leeuw, Motz, Fyfe, Carvalho, & Goldstone,
2022; Grubbs, 2022; Wiernik, Raghavan, Allan, & Denison,
2022). Therefore, social scientists should precisely identify the
most effective intervention under each arising set of circumstances.

The integrative approach naturally emphasizes contingencies
and enables practitioners to distinguish between the most general
result and the result that is most useful in practice. For example, in
Figure 2B, the experiments depicted with a gray point correspond
to the most general claim, occupying the largest region in the
design space. However, this view ignores relevance, defined as
points that represent the “target” conditions or the particular real-
world context to which the practitioner hopes to generalize the
results (Berkman & Wilson, 2021; Brunswik, 1955), as shown in
Figure 2C. By concretely emphasizing these theoretical contingen-
cies, the integrative approach supports “use-inspired” research
(Stokes, 1997; Watts, 2017).

4. Existing steps toward integrative experiments

Integrative experiment design is not yet an established framework.
However, some recent experimental work has begun to move in
the direction we endorse – for example, by explicitly constructing
a design space, sampling conditions more broadly and densely
than the one-at-a-time approach would have, and constructing
new kinds of theories that reflect the complexity of human behav-
ior. In this section, we describe three examples of such experi-
ments in the domains of (1) moral judgments, (2) risky choices,
and (3) subliminal priming effects. Note that these examples are
not an exhaustive accounting of relevant work, nor fully fleshed
out exemplars of the integrative framework. Rather, we find
them to be helpful illustrations of work that is closely adjacent
to what we describe and evidence that the approach is realizable
and can yield useful insights.

4.1. Factors influencing moral judgments

Inspired by the trolley problem, the seminal “Moral Machine”
experiment used crowdsourcing to study human perspectives on
moral decisions made by autonomous vehicles (Awad et al.,
2018, 2020). The experiment was supported by an algorithm
that sampled a nine-dimensional space of over 9 million distinct
moral dilemmas. In the first 18 months after deployment, the
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researchers collected more than 40 million decisions in 10 lan-
guages from over 4 million unique participants in 233 countries
and territories (Fig. 3A).

The study offers numerous findings that were neither obvious
nor deducible from prior research or traditional experimental
designs. For example, they show that once a moral dilemma is
made sufficiently complex, few people will hold to the principle
of treating all lives equally. Instead, they appear to treat demo-
graphic groups quite differently – for example, a willingness to
sacrifice the elderly in service of the young, and a preference for
sparing the wealthy over the poor at about the same level as the
preference for preserving people following the law over those
breaking it (Awad et al., 2018). A second surprising finding by
Awad et al. (2018) was that the differences between omission
and commission (a staple of discussions of Western moral philos-
ophy) ranks surprisingly low relative to other variables affecting
judgments of morality and that this ethical preference for inaction
is primarily concentrated in Western cultures (e.g., North
America and many European countries of Protestant, Catholic,
and Orthodox Christian cultural groups). Indeed, the observation
that clustering between countries is not just based on one or two

ethical dimensions, but on a full profile of the multiplicity of eth-
ical dimensions is something that would have been impossible to
detect using studies that lacked the breadth of experimental con-
ditions sampled in this study.

Moreover, such an approach to experimentation yields datasets
that are more useful to other researchers as they evaluate their
hypotheses, develop new theories, and address long-standing con-
cerns such as which variables matter most to producing a behav-
ior and what their relative contributions might be. For instance,
Agrawal and colleagues used the dataset generated by the Moral
Machine experiment to build a model with a black-box machine-
learning method (specifically, an artificial neural network) for
predicting people’s decisions (Agrawal, Peterson, & Griffiths,
2020). This predictive model was used to critique a traditional
cognitive model and identify potentially causal variables influenc-
ing people’s decisions. The cognitive model was then evaluated in
a new round of experiments that tested its predictions about the
consequences of manipulating the causal variables. This approach
of “scientific regret minimization” combined machine learning
with rational choice models to jointly maximize the theoretical
model’s predictive accuracy and interpretability in the context

Figure 3. Examples of integrative experiments. The top row illustrates the experimental tasks used in the Moral Machine, decisions under risk, and subliminal
priming effects experiments, respectively, followed by the parameters varied across each experiment (bottom row). Each experiment instance (i.e., a scenario
in the Moral Machine experiment, a pair of gambles in the risky-choice experiment, and a selection of facet values in the subliminal priming effects experiment)
can be described by a vector of parameter values. Reducing the resulting space to two dimensions (2D) visualizes coverage by different experiments. This 2D
embedding results from applying principal component analysis (PCA) to the parameters of these experimental conditions.
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of moral judgments. It also yielded a more-complex theory than
psychologists might be accustomed to: The final model had
over 100 meaningful predictors, each of which could have been
the subject of a distinct experiment and theoretical insight
about human moral reasoning. By considering the influence of
these variables in a single study by Awad et al. (2018), the
researchers could ask what contribution each made to explaining
the results. Investigation at this scale becomes possible when
machine-learning methods augment the efforts of human theo-
rists (Agrawal et al., 2020).

4.2. The space of risky decisions

The choice prediction competitions studied human decisions under
risk (i.e., where outcomes are uncertain) by automating selection of
more than 100 pairs of gambles from a 12-dimensional space with
an algorithm (Erev, Ert, Plonsky, Cohen, & Cohen, 2017; Plonsky
et al., 2019). Recent work scaled this approach by taking advantage
of the larger sample sizes made possible by virtual labs, collecting
human decisions for over 10,000 pairs of gambles (Bourgin,
Peterson, Reichman, Russell, & Griffiths, 2019; Peterson, Bourgin,
Agrawal, Reichman, & Griffiths, 2021).

By sampling the space of possible experiments (in this case,
gambles) much more densely (Fig. 3B), Peterson et al. (2021)
found that two of the classic phenomena of risky choice – loss
aversion and overweighting of small probabilities – did not man-
ifest uniformly across the entire space of possible gambles. These
two phenomena originally prompted the development of prospect
theory (Kahneman & Tversky, 1979), representing significant
deviations from the predictions of classic expected utility theory.
By identifying regions of the space of possible gambles where loss
aversion and overweighting of small probabilities occur, Kahneman
and Tversky showed that expected utility theory does not capture
some aspects of human decision making. However, in analyzing
predictive performance across the entire space of gambles,
Peterson et al. found that prospect theory was outperformed by a
model in which the degree of loss aversion and overweighting of
small probabilities varied smoothly over the space.

The work of Peterson et al. (2021) illustrates how the content
of theories might be expected to change with a shift to the inte-
grative approach. Prospect theory makes a simple assertion
about human decision making: People exhibit loss aversion and
overweight small probabilities. Densely sampling a larger region
of the design space yields a more nuanced theory: While the func-
tional form of prospect theory is well suited for characterizing
human decisions, the extent to which people show loss aversion
and overweight small probabilities depends on the context of
the choice problem. That dependency is complicated. Even so,
Peterson et al. identified several relevant variables such as the var-
iability of the outcomes of the underlying gambles and whether
the gamble was entirely in the domain of losses. Machine-learning
methods were useful in developing this theory, initially to opti-
mize the parameters of the functions assumed by prospect theory
and other classic theories of decision making so as to ensure eval-
uation of the best possible instances of those theories, and then to
demonstrate that these models did not capture variation in peo-
ple’s choices that could be predicted by more-complex models.

4.3. A metastudy of subliminal priming effects

A recent cognitive psychology paper described an experiment in
which a subliminal cue influences how participants balance

speed and accuracy in a response-time task (Reuss, Kiesel, &
Kunde, 2015). In particular, participants were instructed to rap-
idly select a target according to a cue that signaled whether to pri-
oritize response accuracy over speed, or vice versa. Reuss et al.
reported typical speed–accuracy tradeoffs: When cued to priori-
tize speed, participants were faster and gave less accurate
responses, whereas when cued to prioritize accuracy, participants
were slower and more accurate. Crucially, this relationship was
also found with cues that were rendered undetectable via a
mask, an image presented directly before or after the cue that
can suppress conscious perception of it.

The study design of the original experiment included several
nuisance variables (e.g., the color of the cue), the values of
which were not thought to affect the finding of subliminal effects.
If the claimed effects were general, it would appear for all plausi-
ble values of the nuisance variables, whereas its appearance in
some (contiguous) ranges of values but not in others would indi-
cate contingency. And if spurious, the effect would appear only
for the original values, if at all.

Baribault et al. (2018) took a “radical randomization”
approach (also called a “metastudy” approach) in examining the
generalizability and robustness of the original finding by random-
izing 16 independent variables that could moderate the subliminal
priming effect (Fig. 3C). By sampling nearly 5,000 “microexperi-
ments” from the 16-dimensional design space, Baribault et al.
revealed that masked cues had an effect on participant behavior
only in the subregion of the design space where the cue is con-
sciously visible, thus providing much stronger evidence about
the lack of the subliminal priming effect than any single tradi-
tional experiment evaluating this effect could have. For a recent,
thorough discussion of the metastudy approach and its advan-
tages, along with a demonstration using the risky-choice framing
effect, see DeKay, Rubinchik, Li, and De Boeck (2022).

5. Critiques and concerns

We have argued that adopting what we have called “integrative
designs” in experimental social and behavioral science will lead
to more-consistent, more-cumulative, and more-useful science.
As should be clear from our discussion, however, our proposal
is preliminary and therefore subject to several questions and con-
cerns. Here we outline some of the critiques we have encountered
and offer our responses.

5.1. Isn’t the critique of the one-at-a-time approach unfair?

One possible response is that our critique of the one-at-a-time
approach is unduly critical and does not recognize its proper
role in the future of social and behavioral sciences. To be clear,
we are neither arguing that scientists should discard the
“one-at-a-time” paradigm entirely nor denigrating studies
(including our own!) that have employed it. The approach has
generated a substantial amount of valuable work and continues
to be useful for understanding individual causal effects, shaping
theoretical models, and guiding policy. For example, it can be a
sufficient and effective means to provide evidence for the exis-
tence of a phenomenon (but not the conditions under which it
exists), as in field experiments that show that job applicants
with characteristically “Black” names are less likely to be inter-
viewed than those with “White” names, revealing the presence of
structural racism and informing public debates about discrimina-
tion (Bertrand & Mullainathan, 2004). Moreover, one-at-a-time
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experimentation can precede the integrative approach when explor-
ing a new topic and identifying the variables that make up the
design space.

Rather, our point is that the one-at-a-time approach cannot do
all the work that is being asked of it, in large part because theories
in the social and behavioral sciences cannot do all the work that is
being asked of them. Once we recognize the inherent imprecision
and ambiguity of social and behavioral theories, the lack of com-
mensurability across independently designed and executed exper-
iments is revealed as inevitable. Similarly, the solution we describe
here can be understood simply as baking commensurability into
the design process, by explicitly recognizing potential dimensions
of variability and mapping experiments such that they can be
compared with one another. In this way, the integrative approach
can complement one-at-a-time experiments by incorporating
them within design spaces (analogous to how articles already con-
textualize their contribution in terms of the prior literature),
through which the research field might quickly recognize creative
and pathbreaking contributions from one-at-a-time research.

5.2. Can’t we solve the problem with meta-analysis?

As discussed earlier, meta-analyses offer the attractive proposition
that accumulation of knowledge can be achieved through a proce-
dure that compares and combines results across experiments. But
the integrative approach is different in at least three important
ways.

First, meta-analyses – as well as systematic reviews and integra-
tive conceptual reviews – are by nature post hoc mechanisms for
performing integration: The synthesis and integration steps occur
after the data are collected and the results are published.
Therefore, it can take years of waiting for studies to accumulate
“naturally” before one can attempt to “put them together” via
meta-analyses (if at all, as the vast majority of published effects
are never meta-analyzed). More importantly, because commensu-
rability is not a first-order consideration of one-at-a-time studies,
attempts to synthesize collections of such studies after the fact are
intrinsically challenging. The integrative approach is distinct in
that it treats commensurability as a first-order consideration
that is baked into the research design at the outset (i.e., ex
ante). As we have argued, the main benefit of ex ante over ex
post integration is that the explicit focus on commensurability
greatly eases the difficulty of comparing different studies and
hence integrating their findings (whether similar or different).
In this respect, our approach can be viewed as a “planned meta-
analysis” that is explicitly designed to sample conditions more
broadly, minimize sampling bias, and efficiently reveal how effects
vary across conditions. Although it may take more time and effort
(and thus money) to run an integrative experiment than a single
traditional experiment, when considering the accumulated effort
of all the original research, this effort is much less than that of
typical meta-analyses (see sect. 5.6 for a discussion about costs).

Second, although a meta-analysis typically aims to estimate the
size of an effect by aggregating (e.g., averaging) over design vari-
ations across experiments, our emphasis is on trying to map the
variation in an effect across an entire design space. While some
meta-analyses with sufficient data attempt to determine the het-
erogeneity of the effect of interest, these efforts are typically hin-
dered by the absence of systematic data on the variations in design
choices (as well as in methods).

Third, publication bias induced by selective reporting of con-
ditions and results – known as the file drawer problem (Carter,

Schönbrodt, Gervais, & Hilgard, 2019; Rosenthal, 1979) – can
lead to biased effect-size estimates in meta-analyses. While there
are methods for identifying and correcting such biases, one can-
not be sure of their effectiveness in any particular case because of
their sensitivity to untestable assumptions (Carter et al., 2019;
Cooper, Hedges, & Valentine, 2019). Another advantage of the
integrative approach is that it is largely immune to such problems
because all sampled experiments are treated as informative,
regardless of the novelty or surprise value of the individual find-
ings, thereby greatly reducing the potential for bias.

5.3. How do integrative experiments differ from other recent
innovations in psychology?

There have been several efforts to innovate on traditional experi-
ments in the behavioral and social sciences. One key innovation is
collaboration by multiple research labs to conduct systematic rep-
lications or to run larger-scale experiments than had previously
been possible. For instance, the Many Labs initiative coordinated
numerous research labs to conduct a series of replications of sig-
nificant psychological results (Ebersole et al., 2016; Klein et al.,
2014, 2018). This effort has itself been replicated in enterprises
such as the ManyBabies Consortium (ManyBabies Consortium,
2020), ManyClasses (Fyfe et al., 2021), and ManyPrimates
(Many Primates et al., 2019), which pursue the same goal with
more-specialized populations, and in the DARPA SCORE pro-
gram, which did so over a representative sample of experimental
research in the behavioral and social sciences (Witkop, n.d.).13

The Psychological Science Accelerator brings together multiple
labs with a different goal: To evaluate key findings in a broader
range of participant populations and at a global scale
(Moshontz et al., 2018). Then, there is the Crowdsourcing
Hypothesis Tests collaboration, which assigned 15 research
teams to each design a study targeting the same hypothesis, vary-
ing in methods (Landy et al., 2020). Moreover, there is a recent
trend in behavioral science to run “megastudies,” in which
researchers test a large number of treatments in a single study
in order to increase the pace and comparability of experimental
results (Milkman et al., 2021, 2022; Voelkel et al., 2022).

All of these efforts are laudable and represent substantial
methodological advances that we view as complements to, not
substitutes for, integrative designs. What is core to the integrative
approach is the explicit construction of, sampling from, and
building theories upon a design space of experiments. Each ongo-
ing innovation can contribute to the design of integrative experi-
ments in its own way. For example, large-scale collaborative
networks such as Many Labs can run integrative experiments
together by assigning points in the design space to participating
labs. Or in the megastudy research design, the interventions
selected by researchers can be explicitly mapped into design
spaces and then analyzed in a way that aims to reveal contingen-
cies and generate metatheories of the sort discussed in section 3.3.

5.4. What about unknown unknowns?

There will always be systematic nontrivial variables that should be
represented in the design space but are missing – these are the
unknown unknowns. We believe our responses to this challenge
are worth expanding upon.

First, we acknowledge the challenge inherent in the first step of
integrative experiment design: Constructing the design space. This
construction requires identifying the subset of variables to include
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from an infinite set of possible variables that could define the
design space of experiments within a domain. To illustrate such
a process, we discussed the example domain of group synergy
(see sect. 3.1). But, of course, we think that the field is wide
open, with many options to explore; that the methodological
details will depend on the domain of interest; and that best prac-
tices will emerge with experience.

Second, although we do not yet know which of the many
potentially relevant dimensions should be selected to represent
the space, and there are no guarantees that all (or even most) of
the selected dimensions will play a role in determining the out-
come, the integrative approach can shed light on both issues.
On the one hand, experiments that map to the same point in
the design space but yield different results indicate that some
important dimension is missing from the representation of the
space. On the other, experiments that systematically vary in
the design space but yield similar results could indicate that the
dimensions where they differ are irrelevant to the effect of interest
and should be collapsed.

5.5. This sounds great in principle but it is impossible to do in
practice

Even with an efficient sampling scheme, integrative designs are
likely to require a much larger number of experiments than is typ-
ical in the one-at-a-time paradigm; therefore, practical implemen-
tation is a real concern. However, given recent innovations in
virtual lab environments, participant sourcing, mass collaboration
mechanisms, and machine-learning methods, the approach is
now feasible to some.

5.5.1. Virtual lab environments
Software packages such as jsPsych (de Leeuw, 2015) nodeGame
(Balietti, 2017), Dallinger (https://dallinger.readthedocs.io/),
Pushkin (Hartshorne, de Leeuw, Goodman, Jennings, &
O’Donnell, 2019), Hemlock (Bowen, n.d.), and Empirica
(Almaatouq et al., 2021b) support development of integrative
experiments that can systematically cover an experimental
design’s parameter space with automatically executed conditions.
Even with these promising tools, for which development is ongo-
ing, we still believe that one of the most promising, cost-effective
ways to accelerate and improve progress in social science is to
increase investment in automation (Yarkoni et al., 2019).

5.5.2. Recruiting participants
Another logistical challenge to integrative designs is that ade-
quately sampling the space of experiments will typically require
a large participant pool from which the experimenter can draw,
often repeatedly. As it stands, the most common means of recruit-
ing participants online involves crowdsourcing platforms
(Horton, Rand, & Zeckhauser, 2011; Mason & Suri, 2012). The
large-scale risky-choice dataset described above, for example,
used this approach to collect its 10,000 pairs of gambles
(Bourgin et al., 2019). However, popular crowdsourcing platforms
such as Amazon Mechanical Turk (Litman, Robinson, &
Abberbock, 2017) were designed for basic labeling tasks, which
can be performed by a single person and require low levels of
effort. And the crowdworkers performing the tasks may have
widely varying levels of commitment and produce work of vary-
ing quality (Goodman, Cryder, & Cheema, 2013). Researchers are
prevented by Amazon’s terms of use from knowing whether
crowdworkers have participated in similar experiments in the

past, possibly as professional study participants (Chandler,
Mueller, & Paolacci, 2014). To accommodate behavioral research’s
special requirements, Prolific and other services (Palan & Schitter,
2018) have made changes to the crowdsourcing model, such as by
giving researchers greater control over how participants are sam-
pled and over the quality of their work.

Larger, more diverse volunteer populations are also possible to
recruit, as the Moral Machine experiment exemplifies. In the first
18 months after deployment, that team gathered more than 40
million moral judgments from over 4 million unique participants
in 233 countries and territories (Awad, Dsouza, Bonnefon, Shariff,
& Rahwan, 2020). Recruiting such large sample sizes from volun-
teers is appealing; however, success with such recruitment
requires participant-reward strategies like gamification or person-
alized feedback (Hartshorne et al., 2019; Li, Germine, Mehr,
Srinivasan, & Hartshorne, 2022). Thus, it has been hard to gener-
alize the model to other important research questions and exper-
iments, particularly when taking part in the experiment does not
appear to be fun or interesting. Moreover, such large-scale data
collection using viral platforms such as the Moral Machine may
require some flexibility from Institutional Review Boards (IRBs),
as they resemble software products that are open to consumers
more than they do closed experiments that recruit from well-
organized, intentional participant pools. In the Moral Machine
experiment, for example, the MIT IRB approved pushing the con-
sent to an “opt-out” option at the end, rather than obtaining con-
sent prior to participation in the experiment, as the latter would
have significantly increased participant attrition (Awad et al.,
2018).

5.5.3. Mass collaboration
Obtaining a sufficiently large sample may require leveraging
emerging forms of organizing research in the behavioral and
social sciences, such as distributed collaborative networks of lab-
oratories (Moshontz et al., 2018). As we discussed earlier, in prin-
ciple, large-scale collaborative networks can cooperatively run
integrative experiments by assigning points in the design space
to participating labs.

5.5.4. Machine learning
The physical and life sciences have benefited greatly from
machine learning. Astrophysicists use image-classification systems
to interpret the massive amounts of data recorded by their tele-
scopes (Shallue & Vanderburg, 2018). Life scientists use statistical
methods to reconstruct phylogeny from DNA sequences and use
neural networks to predict the folded structure of proteins
(Jumper et al., 2021). Experiments in the social and behavioral
sciences, in contrast, have had relatively few new methodological
breakthroughs related to these technologies. While social and
behavioral scientists in general have embraced “big data” and
machine learning, their focus to date has largely been on nonex-
perimental data.14 In contrast, the current scale of experiments in
the experimental social and behavioral sciences does not typically
produce data at the volumes necessary for machine-learning mod-
els to yield substantial benefits over traditional methods.

Integrative experiments offer several new opportunities for
machine-learning methods to be used to facilitate social and
behavioral science. First, by producing larger datasets – either
within a single experiment or across multiple integrated experi-
ments in the same design space – the approach makes it possible
to use a wider range of machine-learning methods, particularly
ones less constrained by existing theories. This advantage is
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illustrated by the work of Peterson et al. (2021), whose neural net-
work models were trained on human choice data to explore the
implications of different theoretical assumptions for predicting
decisions. Second, these methods can play a valuable role in help-
ing scientists make sense of the many factors that potentially
influence behavior in these larger datasets, as in Agrawal et al.’s
(2020) analysis of the Moral Machine data. Finally, machine-
learning techniques are a key part of designing experiments
that efficiently explore large design spaces, as they are used to
define surrogate models that are the basis for active sampling
methods.

5.6. Even if such experiments are possible, costs will be
prohibitive

It is true that integrative experiments are more expensive to run
than individual one-at-a-time experiments, which may partly
explain why the former have not yet become more popular.
However, this comparison is misleading because it ignores the
cost of human capital in generating scientific insight. Assume
that a typical experimental paper in the social and behavioral sci-
ences reflects on the order of $100,000 of labor costs in the form
of graduate students or postdocs designing and running the
experiment, analyzing the data, and writing up the results.
Under the one-at-a-time approach, such a paper typically con-
tains just one or at most a handful of experiments. The next
paper builds upon the previous results and the process repeats.
With hundreds of articles published over a few decades, the
cumulative cost of a research program that explores roughly 100
points in the implicit design space easily reaches tens of millions
of dollars.

Of those tens of millions of dollars, a tiny fraction – on the
order of $1,000 per paper, or $100,000 per research program
(<1%) – is spent on data collection. If instead researchers con-
ducted a single-integrative experiment that covered the entire
design space, they could collect all the data produced by the entire
research program and then some. Even if this effort explored the
design space significantly less efficiently than the traditional
research program, requiring 10 times more data, data collection
would cost about $1,000,000 (<10%). This is a big financial com-
mitment, but the labor costs for interpreting these data do not
scale with the amount of data. So, even if researchers needed to
commit 10 times as much labor as for a typical research paper,
they would have discovered everything an entire multidecade
research program would uncover in a single study costing only
$2,000,000.

The cost–benefit ratio of integrative experiments is hence at
least an order of magnitude better than that of one-at-a-time
experiments.15 Pinching pennies on data collection results in los-
ing dollars (and time and effort) in labor. If anything, when con-
sidered in aggregate, the efficiency gains of the integrative
approach will be substantially greater than this back of the enve-
lope calculation suggests. As an institution, the social and behav-
ioral sciences have spent tens of billions of dollars during the past
half-century.16 With integrative designs, a larger up-front invest-
ment can save decades of unfruitful investigation and instead real-
ize grounded, systematic results.

5.7. Does this mean that small labs can’t participate?

Although the high up-front costs of designing and running an
integrative experiment may seem to exclude small labs as well

as Principal investigators (PIs) from low-resource institutions,
we anticipate that the integrative approach will actually broaden
the range of people involved in behavioral research. The key
insight here is that the methods and infrastructure needed to
run integrative experiments are inherently shareable. Thus,
while the development costs are indeed high, once the infrastruc-
ture has been built, the marginal costs of using it are low – poten-
tially even lower than running a single, one-at-a-time experiment.
As long as funding for the necessary technical infrastructure is
tied to a requirement for sustaining collaborative research (as dis-
cussed in previous sections), it will create opportunities for a
wider range of scientists to be involved in integrative projects
and for researchers at smaller or undergraduate-focused institu-
tions to participate in ambitious research efforts.

Moreover, research efforts in other fields illustrate how labs of
different sizes can make different kinds of contributions. In biol-
ogy and physics, some groups of scientists form consortia that
work together to define a large-scale research agenda and seek
the necessary funding (as described earlier, several thriving exper-
imental consortia in the behavioral sciences illustrate this possibil-
ity). Other groups develop theory by digging deeper into the data
produced by these large-scale efforts to make discoveries they may
not have imagined when the data were first collected; some scien-
tists focus on answering questions that do not require large-scale
studies, such as the properties of specific organisms or materials
that can be easily studied in a small lab; still other researchers
conduct exploratory work to identify the variables or theoretical
principles that may be considered in future large-scale studies.
We envision a similar ecosystem for the future of the behavioral
sciences.

5.8. Shouldn’t the replication crisis be resolved first?

The replication crisis in the behavioral sciences has led to much
reflection about research methods and substantial efforts to con-
duct more-applicable research (Freese & Peterson, 2017). We view
our proposal as being consistent with these goals, but with a dif-
ferent emphasis than replication. To some extent, this difference is
complementary to replication and can be pursued in parallel with
it, but may suggest a different allocation of resources than a
“replication first” approach.

Discussing the complementary role first, integrative experi-
ments naturally support replicable science. Because choices
about nuisance variables are rarely documented systematically
in the one-at-a-time paradigm, it is not generally possible to
establish how similar or different two experiments are. This obser-
vation may account for some recently documented replication
failures (Camerer et al., 2018; Levinthal & Rosenkopf, 2021).
While the replication debate has focused on shoddy research prac-
tices (e.g., p-hacking) and bad incentives (e.g., journals rewarding
“positive, novel, and exciting” results), another possible cause of
nonreplication is that the replicating experiment is in fact suffi-
ciently dissimilar to the original (usually as a result of different
choices of nuisance parameters) that one should not expect the
result to replicate (Muthukrishna & Henrich, 2019; Yarkoni,
2022). In other words, without operating within a space that
makes experiments commensurate, failures to replicate previous
findings are never conclusive, because doubt remains as to
whether one of the many possible moderator variables explains
the lack of replication (Cesario, 2014). Regardless of whether an
experimental finding’s fragility to (supposedly) theoretically irrel-
evant parameters should be considered a legitimate defense of the
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finding, the difficulty of resolving such arguments further illus-
trates the need for a more explicit articulation of theoretical
scope conditions.

The integrative approach, accepting that treatment effects vary
across conditions, would also recommend that directing massive
resources to replicating existing effects may not be the best way
to help our fields advance. Given that those historical effects
were discovered under the one-at-a-time approach, they evaluate
only specific points in the design space. Consistent with the argu-
ment above, rather than trying to perfectly reproduce those points
in the design space (via “direct” replications), a better use of
resources would be to sample the design space more extensively
and use continuous measures to compare different studies
(Gelman, 2018). In this way, researchers can not only discover
whether historical effects replicate, but also draw stronger conclu-
sions about whether (and to what extent) they generalize.

5.9. This proposal is incompatible with incentives in the social
and behavioral sciences

Science does not occur in a vacuum. Scientists are constantly eval-
uated by their peers as they submit papers for publication, seek
funding, apply for jobs, and pursue promotions. For the integra-
tive approach to become widespread, it must be compatible with
the incentives of individual behavioral scientists, including early
career researchers. Given the current priority that hiring, tenure
& promotion, and awards committees in the social and behavioral
sciences place on identifiable individual contributions (e.g., lead
authorship of scholarly works, perceived “ownership” of distinct
programs of research, leadership positions, etc.), a key pragmatic
concern is that the large-scale collaborative nature of integrative
research designs might make them less rewarding than the
one-at-a-time paradigm for anyone other than the project leaders.

Although a shift to large-scale, collaborative science does
indeed present an adoption challenge, it is encouraging to note
that even more dramatic shifts have taken place in other fields.
In physics, for example, some of the most important results in
recent decades – the discovery of the Higgs Boson (Aad et al.,
2012), gravitational waves (Abbott et al., 2016), and so on –
have been obtained via collaborations of thousands of research-
ers.17 To ensure that junior team members are rewarded for
their contributions, many collaborations maintain “speaker lists”
that prominently feature early career researchers, offering them
a chance to appear as the face of the collaboration. When these
researchers apply for jobs or are considered for promotion, the
leader of the collaboration writes a letter of recommendation
that describes the scientists’ role in the collaboration and why
their work is significant. A description of such roles can also be
included directly in manuscripts through the Contributor Roles
Taxonomy (Allen, Scott, Brand, Hlava, & Altman, 2014), a high-
level taxonomy with 14 roles that describe typical contributions to
scholarly output; the taxonomy has been adopted as an American
National Standards Institute (ANSI)/National Information
Standards Organization (NISO) standard and is beginning to
see uptake (National Information Standards Organization,
2022). Researchers who participate substantially in creating the
infrastructure used by a collaborative effort can receive “builder”
status, appearing as coauthors on subsequent publications that
use that infrastructure. Many collaborations also have mentoring
plans designed to support early career researchers. Together, these
mechanisms are intended to make participation in large collabo-
rations attractive to a wide range of researchers at various career

stages. While acknowledging that physics differs in many ways
from the social and behavioral sciences, we nonetheless believe
that the model of large collaborative research efforts can take
root in the latter. Indeed, we have already noted the existence
of several large collaborations in the behavioral sciences that
appear to have been successful in attracting participation from
small labs and early career researchers.

6. Conclusion

The widespread approach of designing experiments one-at-a-time
– under different conditions with different participant pools, and
with nonstandardized methods and reporting – is problematic
because it is at best an inefficient way to accumulate knowledge,
and at worst it fails to produce consistent, cumulative knowledge.
The problem clearly will not be solved by increasing sample sizes,
focusing on effect sizes rather than statistical significance, or rep-
licating findings with preregistered designs. We instead need a
fundamental shift in how to think about theory construction
and testing.

We describe one possible approach, one that promotes com-
mensurability and continuous integration of knowledge by design.
In this “integrative” approach, experiments would not just evalu-
ate a few hypotheses but would explore and integrate over a wide
range of conditions that deserve explanation by all pertinent the-
ories. Although this kind of experiment may strike many as athe-
oretical, we believe the one-at-a-time approach owes its
dominance not to any particular virtues of theory construction
and evaluation but rather to the historical emergence of experimen-
tal methods under a particular set of physical and logistical con-
straints. Over time, generations of researchers have internalized
these features to such an extent that they are thought to be insep-
arable from sound scientific practice. Therefore, the key to realizing
our proposed type of reform – and to making it productive and
useful – is not only technical, but also cultural and institutional.
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Notes

1. Although we restrict the focus of our discussion to lab experiments in the
social and behavioral sciences, with which we are most familiar, we expect that
our core arguments generalize well to other modes of inquiry and adjacent
disciplines.
2. By analogy, we note that for almost as long as p-values have been used as a
standard of evidence in the social and behavioral sciences, critics have argued
that they are somewhere between insufficient and meaningless (Cohen, 1994;
Dienes, 2008; Gelman & Carlin, 2017; Meehl, 1990a). Yet, in the absence of an
equally formulaic alternative, p-value analysis remains pervasive (Benjamin
et al., 2018).
3. Nor do recent proposals to improve the replicability and reproducibility of
scientific results (Gelman & Loken, 2014; Ioannidis, 2005; Munafò et al., 2017;
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Open Science Collaboration, 2015; Simmons, Nelson, & Simonsohn, 2011)
address the problem. While these proposals are worthy, their focus is on indi-
vidual results, not on how collections of results fit together.
4. We also note that in an alternative formulation of the design space, all var-
iables (including what one would think of as experimental manipulations) are
included as dimensions of the design space and the focal experimental manip-
ulation is represented as a comparison across two or more points in the space.
Some of the examples described in section 4 are more readily expressed in one
formulation, whereas others are more readily expressed in the other. They are
equivalent: It is possible to convert from one to the other without any loss of
information.
5. To illustrate with another example, cultural psychologists such as Hofstede
(2016), Inglehart and Welzel (2005), and Schwartz (2006) identified cultural
dimensions along which groups differ, which then can be used to define dis-
tance measures between populations and to guide researchers in deciding
where to target their data-collection efforts (Muthukrishna et al., 2020).
Another example of this exercise is the extensive breakdown of the “auction
design space” by Wurman, Wellman, and Walsh (2001), which captures the
essential similarities and differences of many auction mechanisms in a format
more descriptive and useful than simple taxonomies and serves as an organi-
zational framework for classifying work within the field.
6. Active learning is also called “query learning” or sometimes “sequential
optimal experimental design” in the statistics literature.
7. Active learning has recently become an important tool for optimizing exper-
iments in other fields, such as machine-learning hyperparameters (Snoek,
Larochelle, & Adams, 2012), materials and mechanical designs (Burger et al.,
2020; Gongora et al., 2020; Lei et al., 2021), and chemical reaction screening
(Eyke, Green, & Jensen, 2020, 2021; Shields et al., 2021) – just to mention a few.
8. For example, surrogate models can be probabilistic models (e.g., a Gaussian
process) as well as nonprobabilistic (e.g., neural networks, tree-based meth-
ods), while sampling strategies can include uncertainty sampling, greedy sam-
pling, and distance-based sampling.
9. Popular active learning libraries for experiments include Ax (Bakshy et al.,
2018), BoTorch (Balandat et al., 2020), and GPflowOpt (Knudde, van der
Herten, Dhaene, & Couckuyt, 2017).
10. See Settles (2011), Greenhill, Rana, Gupta, Vellanki, and Venkatesh
(2020), and Ren et al. (2021) for surveys on active learning.
11. Given that the data from the integrative approach are generated indepen-
dent of the current set of theories in the field, the resulting data are potentially
informative not just about those theories, but about theories that are yet to be
proposed. As a consequence, data generated by this integrative approach are
intended to have greater longevity than data generated by “one-at-a-time”
experiments.
12. Another explanation for the inability to make accurate predictions is that
the majority of dimensions defining the design space are uninformative and
need to be reconsidered.
13. For a more comprehensive list, see Uhlmann et al. (2019).
14. For example, the CHILDES dataset of child-directed speech
(MacWhinney, 2014) has had a significant impact on studies of language
development, and census data, macroeconomic data, and other large datasets
(e.g., from social media and e-commerce platforms) are increasingly prevalent
in political science, sociology, and economics.
15. This shift has already occurred in some areas. For example, the cognitive
neuroscience field has been transformed in the past few decades by the avail-
ability of increasingly effective methods for brain imaging. Researchers now
take for granted that data collection costs tens or hundreds of thousands of
dollars and that the newly required equipment and other infrastructure for
this kind of research costs millions of dollars – that is, they now budget
more for data collection than for hiring staff. Unlocking the full potential of
our envisioned integrative approach will require similarly new, imaginative
ways of allocating resources and a willingness to spend money on generating
more-definitive, reusable datasets (Griffiths, 2015).
16. The budget associated with the NSF Directorate for Social, Behavioral, and
Economic Sciences alone is roughly 5 billion dollars over the past two decades
and, by its 2022 estimate, accounts for “approximately 65 percent of the federal
funding for basic research at academic institutions in the social, behavioral,
and economic sciences” (National Science Foundation, 2022). Extending the
time range to 50 years and accounting for sources of funding beyond the

US federal government, including all other governments, private foundations,
corporations, and direct funding from universities, brings our estimate to tens
of billions of dollars.
17. We thank Saul Perlmutter for sharing his perspective on how issues of
incentives are addressed in physics, drawing on his experience in particle phys-
ics and cosmology.
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Abstract

Creating an integrated design space can be successful only if
researchers agree on how to define and measure a certain phe-
nomenon of interest. Adversarial collaborations and mathemat-
ical modeling can aid in reaching the necessary level of
agreement when researchers depart from different theoretical
perspectives.

We agree with Almaatouq et al.’s target article that there is a need
for addressing the incommensurability of behavioral experiments
and we support the proposed integrative design framework.
However, we would like to highlight that the incommensurability
of experimental results might stem not only from differences in
experimental conditions or populations, but also from disagree-
ments on how to define and measure the phenomenon of interest.
While reaching a consensus is not strictly necessary for research
to progress, we argue that the success of the integrative approach
critically depends on finding agreed-upon theoretical and meth-
odological frameworks.

As an analogy, imagine two researchers, Scarlett and Amber,
who study the phenomenon of “pinkness.” Scarlett uses a design
space that has three dimensions, corresponding to the three base
colors of the RGB system (i.e., red, green, and blue). After exper-
imenting with various color combinations, she identifies the area
of RGB space in which the color pink is produced. Amber, how-
ever, defined her experiments in the YMCK color space. How can
Scarlett and Amber’s experiments be integrated in a single design
space? Two conditions should be met. First, the definition of what
“pink” is must be shared between the two scientists. If the range of
colors that Amber classifies as “pink” is wider than Scarlett’s, then
mapping the results of their experiments onto each other is mean-
ingless. Once there is agreement on the definition of pinkness, the
second condition is to have a means of translating the ranges
under which the phenomenon occurs from RGB space to
YMCK space. Such a translation is quite straightforward in our
analogy, but it can become a lot more complex when real exper-
imental paradigms are involved.

Our main point here is that the integrative approach can only
be successful when researchers agree on the definition of their
phenomenon of interest. This is crucial because the definition
affects experiment design. As a concrete example, consider per-
ceptual awareness studies, where different researchers have used
many different measures of awareness (Timmermans &
Cleeremans, 2015). A recent meta-analysis by Yaron, Melloni,
Pitts, and Mudrik (2022) found a clear association between the
methodological design of an experiment and the theory of con-
sciousness favored by the researchers: An algorithm could even
predict which theory an experiment was testing based on its
methodology alone! A central issue in this literature concerns
whether awareness of a sensory stimulus should be measured
subjectively (i.e., via explicit reports from the participants) or
objectively (i.e., as performance in a forced-choice task).
Crucially, the two methods rest on different definitions of aware-
ness. Objective measures assume that participants can discrimi-
nate stimuli correctly only if they are aware of them, while
subjective measures rest on the assumption that awareness can
diverge from discrimination performance. The difference is not
trivial because it forces researchers to adopt substantially different
experimental strategies. When testing for the existence of uncon-
scious perception, for example, subjective approaches relate

explicit report to discrimination performance, while objective
approaches compare discrimination performance to implicit mea-
sures of perceptual processing, such as reaction times (e.g.,
Dehaene et al., 1998). Integrating these two research lines in a
common experimental space would be unsuccessful because,
depending on the definition of awareness one adopts, the task
design, the collected measures, and the interpretation of results
will differ.

One could attempt to circumvent the problem by placing the
two approaches into one large design space and connecting
them along an additional dimension representing the “measure-
ment method”. However, this strategy is only feasible when the
measures share the same theoretical basis. As mentioned in the
target article, the design space should reveal the conditions
under which a phenomenon emerges. To fulfill this function, it
is crucial that the phenomenon of interest is precisely defined.
Experiments that rest on opposing theoretical views are generally
aimed at detecting (slightly) differently defined phenomena. As
such, forcing them in a common design space means building a
space in which the effect of a particular range of parameters
remains ambiguous. In addition, even when the definition of
the phenomenon is agreed upon, each experimental paradigm
comes with a set of paradigm-specific parameters. Thus, their
integration would require a method of mapping different design
spaces onto each other, which might not be straightforward.
Below, we suggest two potential tools for resolving such
conundrums.

The first is adversarial collaborations. These initiatives bring
together researchers with contrasting theoretical views and moti-
vate them to design experiments that directly test one theory
against another (Cleeremans, 2022; Melloni, Mudrik, Pitts, &
Koch, 2021). Such approaches are currently flourishing in con-
sciousness research (e.g., Melloni et al., 2023). As discussed
above, the definition of the phenomenon of interest (i.e., its the-
oretical basis) is crucial for constructing the design space. By test-
ing predictions of different theories against one another,
adversarial collaborations can help researchers decide on one
definition around which to build (and explore) a full design
space. On a parallel line, adversarial collaborations can result in
agreed upon methods to map theoretical frameworks onto one
another.

The second tool we recommend is mathematical modeling,
which can be particularly helpful when results from different
experimental paradigms need to be related. The shape of the
design space is specific to the paradigm and relating spaces with
different shapes is not always possible. Modeling helps in this
task by creating a shared analysis space in which results obtained
via different measures can be juxtaposed. We draw another exam-
ple from perceptual awareness research: King and Dehaene (2014)
were able to juxtapose results from six major lines of experiments
by constructing an overarching mathematical framework, in
which results stemming from unconnectable design spaces can
be directly compared.

In conclusion, while strongly supporting the integrative exper-
iments approach, our commentary highlights how it might not be
possible to reconcile experiments that adopt different theoretical
views on the effect of interest. As such, the usefulness of the
approach might depend on the researchers’ agreement upon
adequate measures and theories. When lacking, tools like
adversarial collaborations and mathematical models can help
constructing a common design space or connecting otherwise
isolated spaces.
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Abstract

Integrative experiments, as described, seem blindly empirical, as
if the question of generality of effects could not be understood
through controlled one-at-a-time experiments. But current
research using such experiments, especially applied research,
can resolve issues and make progress through understanding
of cause–effect pathways, leaving to engineers the task of trans-
lating this understanding into practice.

Almaatouq et al. claim that the sciences of interest are about the-
ory development. I’m not sure what “theory” means to them.
Possibly the term refers to something like a prediction that X
will affect Y. The term could also refer to a causal explanation,
for example, “people tend to favor harms of omission over
harms of action because they think of omission as default and
use a heuristic of favoring default” or “because they attend
more to actions.” The explanations are usually chains of events,

some of which are mental. Questions about causal explanations
are often addressed in the one-at-a-time paradigm, with careful
controls, and some of these questions are answered (e.g., Baron
& Ritov, 1994).

The one-at-a-time paradigm largely concerns the existence of
effects, not their generality (Baron, 2010). Often the subject
population of interest is “human beings,” and, I hope, most of
them are not yet born. In such cases, all samples are convenience
samples. We can do small tests of generality of causal effects.
Usually they generalize pretty well, in direction if not in magni-
tude. Once we know that a causal process exists, we can ask fur-
ther questions about it to understand it better. Anything we learn
through these experiments will probably apply to the process
when it exists. But existence, of effects and causal chains, is all
we can ever learn from experiments, including the integrative
experiments proposed.

Some of these integrative experiments discussed pit causal
effects against each other. Because the magnitude of effects
depends on all sorts of things, it is not clear that we can conclude
with much generality which one wins. Indeed, group synergy
might work one way in some situations and the opposite in
other situations, but it is not clear that the sample space is suffi-
cient to test all possibilities, and, moreover the mere finding that
effects are present in some part of the space does not tell us why.
The results seem blindly empirical. By contrast, the one-at-a-time
approach, when properly applied, can increase our understanding
of how things work.

Even when causal effects do not compete, estimation of their
relative magnitude will depend on the space of possibilities (as
well as who the subjects are, as the article notes). For example,
moral judgments about autonomous vehicles may yield quite dif-
ferent results from moral judgments about bioethics.

A different sense of the term “theory” refers to explanations
that tie together diverse phenomena that might at first seem to
be unrelated. Freud’s theory of unconscious motivation (still at
work behind the scenes in social psychology, despite its disap-
pearance from most textbooks) was an example. Other theories
are more limited in what they explain, such as the idea that
many errors result from substitution of judgments of one attribute
for judgments about another, which is usually correlated with the
first (Kahneman & Frederick, 2002; also Baron, 1973). In some of
these theories, the claim is that something happens in many cases,
but we do not know which ones. It is something to look for.
Similarly for the “germ theory of disease,” which says that, in try-
ing to find out the cause of a disease, it is a good idea to look for
very small organisms. In such cases, integrative design competes
with the alternative approach of exploring more examples, such
as diseases caused by toxicity or genetic abnormalities.
Brute-force empiricism would be unlikely to discover or explain
such cases.

In applied sciences, such as medicine, broad theory can help,
as the “germ theory of disease,” but this sort of theory, for the
most part, is neither absolute nor completely general, unlike
what physics tries to do. Most medical research is about the
etiology and treatment of particular disorders, one-at-a-time,
although sometimes a discovery can apply to several similar
disorders.

Examples abound in psychology of increased understanding
that results from analysis of particular applied problems. A
great deal of modern social psychology arose historically out of
attempts to understand the rise of fascism. Some of the cognitive
psychology of attention and vigilance arose from the study of
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radar operators in World War II (Garner, 1972). Recent research
on judgment arose out of attempts to measure the nonmarket
value of the harm caused by the Exxon-Valdez oil spill
(Kahneman, Ritov, Jacowitz, & Grant, 1993). Research on fore-
casting was spurred by attempts to understand the failures of
intelligence agencies (Dhami, Mandel, Mellers, & Tetlock,
2015). Research on risk perception was provoked by perceived
over- and under-regulation of risk (Breyer, 1993; Slovic, 1987).
In these cases and many others, we have learned a lot.
Sometimes institutions have even changed their decision-making
procedures in response to what we have learned.

Applied research in medicine and psychology often involves
experimental understanding of phenomena such as disorders
or biases. Such understanding informs the efforts of engineers
(in the broad sense that includes designers of administrative
procedures, decision procedures, systems of psychotherapy, and
human–machine interfaces). Engineers try to get things to
work by a cycle of build–test–build–test and so forth. The practice
of decision analysis, for example, has built on laboratory
results such as those concerning the difficulty of assigning
weights to attributes (von Winterfeldt & Edwards, 1986).
Similar relations between basic one-at-a-time research and
application are the work on “nudges” (Thaler & Sunstein,
2008), cognitive behavior therapy (Beck, 1979), forecasting
(Dhami et al., 2015), and literacy (Treiman, 1992). Often, as in
the last two cases, ultimate applications run into political or insti-
tutional resistance.

This sort of research is not based on data alone but also on
understanding of what kinds of causal links are plausible. Such
understanding often comes from background knowledge from a
variety of fields, including (for psychology) philosophy, linguis-
tics, computer science, biology, and politics. Understanding of a
phenomenon neither comes from blindly empirical research,
nor even from careful controlled experiments uninformed by
background knowledge.

Competing interest. None.

References

Baron, J. (1973). Semantic components and conceptual development. Cognition, 2, 189–
207.

Baron, J. (2010). Looking at individual subjects in research on judgment and decision
making (or anything). Acta Psychologica Sinica, 42, 1–11.

Baron, J., & Ritov, I. (1994). Reference points and omission bias. Organizational Behavior
and Human Decision Processes, 59, 475–498.

Beck, A. T. (Ed.). (1979). Cognitive therapy of depression. Guilford Press.
Breyer, S. (1993). Breaking the vicious circle: Toward effective risk regulation. Harvard

University Press.
Dhami, M. K., Mandel, D. R., Mellers, B. A., & Tetlock, P. E. (2015). Improving in-

telligence analysis with decision science. Perspectives on Psychological Science, 10(6),
753–757.

Garner, W. R. (1972). The acquisition and application of knowledge: A symbiotic relation.
American Psychologist, 27(10), 941–946.

Kahneman, D., & Frederick, S. (2002). Representativeness revisited: Attribute substitution
in intuitive judgment. In T. Gilovich, D. Griffin, & D. Kahneman (Eds.), Heuristics
and biases: The psychology of intuitive judgment (pp. 49–81). Cambridge University
Press.

Kahneman, D., Ritov, I., Jacowitz, K. E., & Grant, P. (1993). Stated willingness to pay for
public goods: A psychological perspective. Psychological Science, 4(5), 310–315.

Slovic, P. (1987). Perception of risk. Science (New York, N.Y.), 236, 280–285.
Thaler, R. H., & Sunstein, C. R. (2008). Nudge: Improving decisions about health, wealth,

and happiness. Yale University Press.
Treiman, R. (1992). Beginning to spell: A study of first-grade children. Oxford University

Press.
von Winterfeldt, D., & Edwards, W. (1986). Decision analysis and behavioral research.

Cambridge University Press.

Assume a can opener

Cory J. Clarka,b* , Calvin Ischc, Paul Connorb

and Philip E. Tetlocka,b

aThe Wharton School, University of Pennsylvania, Philadelphia, PA, USA;
bSchool of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
and cAnnenberg School for Communication, University of Pennsylvania,
Philadelphia, PA, USA
cjclark@sas.upenn.edu; calvin.isch@gmail.com; paulrobertconnor@gmail.com;
tetlock@wharton.upenn.edu
https://www.coryjclark.com
https://www.asc.upenn.edu/people/graduate-student/calvin-isch
https://www.paulconnorpsych.com
https://www.sas.upenn.edu/tetlock/

*Corresponding author.

doi:10.1017/S0140525X2300239X, e36

Abstract

We propose a friendly amendment to integrative experiment
design (IED), adversarial-collaboration IED, that incentivizes
research teams from competing theoretical perspectives to iden-
tify zones of the design space where they possess an explanatory
edge. This amendment is especially critical in debates that have
high policy stakes and carry a strong normative-political charge
that might otherwise prevent free exchange of ideas.

We lift our title from a joke dating back at least 50 years
(Boulding, 1970): A physicist, a chemist, and an economist are
stranded on a desert island with only a can of food. The physicist
and chemist devise ingenious, discipline-grounded solutions for
opening the can: Heat, pressure, force. But their high-abstraction
colleague sees a better approach, “Let’s think this through system-
atically – and start by assuming we have a can opener.”

The story comes to mind because we see integrative experi-
ment design (IED) as a high-abstraction idea that is attractive
in principle but that will be difficult to put to practical use. We
see a tacit assumption underlying IED – namely, behavioral sci-
ence is a rigorously self-correcting epistemic community regulated
by CUDOS norms of science: Communal data-sharing, universal-
ism, disinterestedness, and organized skepticism (Merton, 1942/
1973). In this optimistic view, the central obstacle to making
behavioral science far more cumulative is essentially organiza-
tional. Investigators are too individualistic, insisting on pursuing
their own trademark concepts and methods, which entails setting
up false binary oppositions (playing 20 questions with nature)
from which their side emerges victorious. If only we could subor-
dinate rambunctious scientific egos to the greater epistemic good
– integrative experiment design – rapid progress would follow.

We agree with the authors’ criticisms that behavioral science
suffers from a validity crisis (in our view, a more devastating
problem for behavioral scientists’ collective credibility than the
better-known replication crisis). There are countless contradictory
claims in the literature and no means of reconciling them because
different research teams rely on different methods to study similar
phenomena (Clark, Costello, Mitchell, & Tetlock, 2022). Excessive
individualism, however, is not the only problem; excessive confor-
mity is as well. Truly thorough “research cartography,” or
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mapping out a comprehensive design space for a phenomenon
requires investigators to engage with theories that seem to contra-
dict their own previously published work, with variables that fall
far outside their area of expertise, and with deeply dissonant pos-
sibilities (Tetlock, 1994; Tetlock, Kristel, Elson, Green, & Lerner,
2000). But for a variety of personal, social, theoretical, and ideo-
logical reasons, investigators often balk at even considering cer-
tain categories of hypotheses (Clark & Winegard, 2020).

These pockets of collective closed-mindedness will bias –
sometimes severely bias – the design space. Consider studies of
poverty or educational attainment in which many investigators
are unwilling to consider behavioral and genetic explanations
(Harden, 2021), studies of gender differences in which evolution-
ary hypotheses are taboo (Buss & von Hippel, 2018), or studies of
team dynamics in which investigators are reluctant to report
results that cast doubt on the benefits of demographic diversity
(Clark et al., 2023; Eagly, 2016). The list of “off limits” – yet per-
fectly plausible – explanations for many of the most societally
important topics in behavioral science is long. And these tend
to be the precise topics where scholars are most at loggerheads
and thus most in need of progress.

Unlike cartography of the physical world, abstract spaces in
social science cannot always be clearly identified and measured,
and this ambiguity makes it easy for IED teams to leave out the
strongest challenges to their pet theories and ignore socially costly
hypotheses. This is especially true if IED teams are relatively
homogenous in their theoretical orientations.

This is a challenging problem, and we doubt any big idea will
solve it. However, not to let perfection be the enemy of improve-
ment, we propose that IED will be most productive in the context
of adversarial collaborations, in which teams of collaborators
include scholars who have previously published from multiple
competing theoretical perspectives (Clark & Tetlock, 2023;
Kahneman, 2003). Traditionally, adversarial collaborations
include pairs of disagreeing scholars (e.g., Abele, Ellemers,
Fiske, Koch, & Yzerbyt, 2021; Killingsworth, Kahneman, &
Mellers, 2023; Mellers, Hertwig, & Kahneman, 2001), but
adversarial-collaboration IEDs could include scholars from multi-
ple or even dozens of formerly competing perspectives who study
similar phenomena, such as poverty, educational attainment, or
violence.

An adversarial approach helps address the problem of motiva-
tion. Many scholars are ambitious and want their scientific con-
tributions to be distinctive, novel, important, and widely
generalizable, and consequently, they lack the motivation to artic-
ulate a thorough design space. Indeed, scholars are often aware of
alternative but equally relevant independent variables, dependent
variables, and contexts from those they routinely test to support
their theories, and they choose to avoid or file drawer these alter-
native approaches. Requiring scholars to work with theoretical
adversaries would increase the likelihood that the research design
space includes relevant parameters that might be rejected by or
simply unknown to a team of theoretically homogeneous scholars.
This would also help narrow the design space to the most relevant
and high-quality parameters by eliminating those that a subset of
the research team considers fatally flawed (thus increasing the fea-
sibility of IEDs).

Additionally, our proposed approach could normalize explicit
consideration of taboo and other alternative explanations and
explicit inclusion of scholars who forward alternative conclusions.
Adversarial-collaboration IEDs may be considered incomplete, or
lopsided, or biased without relatively exhaustive sampling from

relevant parameters and the scholars with expertise in those
parameters. Although current norms of science threaten scholars
with ostracism and other social sanctions for considering alterna-
tive conclusions and affiliating with the scholars who forward
them, adversarial IEDs could require, and thus incentivize this
more disinterested and sedulous approach to scholarship
(Nemeth, Brown, & Rogers, 2001).

Adversarial IEDs may also motivate the search for genuine
metatheories that can explain apparent discrepancies between
leading scholars’ preferred theories. Rather than pitting seemingly
contradictory hypotheses against one another in a “winner takes
all” model of science (e.g., are political rightists more cognitively
rigid than leftists or is cognitive rigidity symmetrical?), adversarial
IEDs could lead to the development of metatheories that explain
in which contexts different claims are true (Bowes et al., 2023).
Over time, this could contribute to a more cooperative (and less
acrimonious) scientific environment, in which intellectual adver-
saries are viewed less as enemies to be demolished than as col-
leagues in pursuit of truth.
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Abstract

Demonstrating the limitations of the one-at-a-time approach,
crowd initiatives reveal the surprisingly powerful role of analytic
and design choices in shaping scientific results. At the same
time, cross-cultural variability in effects is far below the levels
initially expected. This highlights the value of “medium” science,
leveraging diverse stimulus sets and extensive robustness checks
to achieve integrative tests of competing theories.

Almaatouq et al. argue that the “one-at-a-time” approach to scien-
tific research has led to collections of atomized findings of unclear
relevance to each other. They advocate for an integrative approach
in which stimuli are varied systematically across theoretically impor-
tant dimensions. This allows for strong inferences (Platt, 1964)
regarding which theory holds the most explanatory power across
diverse contexts, as well as the identification of meaningful
moderators.

Our research group has addressed this challenge by examining
the analytic and design choices that naturalistically emerge across
independent investigators as well as the implications for the
empirical results (Landy et al., 2020; Schweinsberg et al., 2021;
Silberzahn et al., 2018). These crowdsourced many analysts and
many design initiatives reveal dramatic dispersion in estimates
due to researcher choices, empirically demonstrating the limita-
tions of the one-at-a-time approach (see also Baribault et al.,
2018; Botvinik-Nezer et al., 2020; Breznau et al., 2022;
Menkveld et al., 2023). At the same time, we have sought to fur-
ther increase the already high-theoretical value of replications by
leveraging them for competitive theory testing. Rather than test
the original theory against the null hypothesis, we include new
conditions and measures allowing us to simultaneously examine
the preregistered predictions of different theoretical accounts
(Tierney et al., 2020, 2021). In this manner, we can start to
prune the dense theoretical landscape (Leavitt, Mitchell, &
Peterson, 2010) found in areas of inquiry characterized by
many atomized findings and narrow theories.

In contrast, a striking and unexpected lack of variability has
emerged in the results when many laboratories collect data
using the same methods. In such crowd replication initiatives,
cross-site heterogeneity in estimates is far below what one
would expect based on intuition and theory (Olsson-Collentine,
Wicherts, & van Assen, 2020). From a perspectivist (McGuire,
1973) standpoint, psychological phenomena should emerge in
some contexts and be nonexistent or even reversed in others
(see also Henrich, Heine, & Norenzayan, 2010). And yet, effects

seem to either fail to replicate across all populations sampled or
emerge again and again (see also Delios et al., 2022).

Bringing many designs, analyses, theories, and data collection
teams together, we recently completed a crowdsourced initiative
that qualifies as the type of comprehensive integrative test that
Almaatouq et al. envision. Tierney et al. (2023) systematically
re-examined the relationships between anger expression, target
gender, and status conferral. In the original research, women
who displayed anger in professional settings suffered steep
drops in the status and respect they were accorded by social per-
ceivers (Brescoll & Uhlmann, 2008). In the original investigations,
only a single set of videos featuring one female and one male tar-
get were employed as stimuli, and all participants were from
Connecticut. In contrast, the crowdsourced replication project
featured 27 experimental designs, a multiverse capturing many
defensible analytic approaches, and 68 data collection sites in 23
countries. We further tested the original prescriptive stereotype
account against competing theories predicting that anger signals
status similarly for women and men, that anger has vastly differ-
ent status implications in Eastern and Western cultures, and that
feminist messaging has successfully reduced or even reversed gen-
der biases. As Almaatouq et al. recommend, we probed the dose–
response relationship between anger and status conferral by both
experimentally manipulating and measuring the extremity of
emotion expressions across different designs.

The crowd initiative finds that anger increases status by signal-
ing dominance and assertiveness, while also diminishing it by
projecting incompetence and unlikability, aggregating across a
wide range of research approaches and populations. Critically,
this same pattern emerged for both female and male targets, social
perceivers of different genders, and in both Eastern and harmony-
oriented cultures and Western and more conflict-oriented ones.
Highlighting the value of deploying diverse research approaches,
six of the 27 designs found favoritism toward men in status con-
ferral, but one design pointed to the opposite conclusion.
Similarly, in a multiverse with 32 branches, there existed just
two specifications that supported the original gender-and-anger
backlash effect. Had we employed a one-at-a-time approach, we
could have accidentally hit upon or strategically chosen narrow
methods yielding nonrepresentative conclusions (e.g., of pro-
female status bias or gender backlash). Overall, the intellectual
returns on including many designs, many analyses, and many the-
ories were high. In contrast, and consistent with past crowd initia-
tives, collecting data across many places revealed minimal
cross-site heterogeneity and no interesting cultural differences.

Thus, we envision a diverse scientific ecology consisting of
many “small” and “medium” projects and just a few huge interna-
tional efforts. The one-at-a-time approach is an efficient means to
introduce initial evidence for promising new hypotheses.
However, as a theoretical space becomes increasingly cluttered,
intellectual returns are maximized by sampling stimuli widely
and employing many analyses to provide severe tests of compet-
ing theories (Mayo, 2018). Although this could involve a crowd
of laboratories, a single team could carry out a multiverse
(Steegen, Tuerlinckx, Gelman, & Vanpaemel, 2016) and opera-
tionalize key variables in a variety of ways. A small team might
sample just one or two participant populations that are easily
accessible to them. Finally, a subset of findings of particularly
high-theoretical and practical importance should be selected for
crowdsourced data collections across many nations as a systematic
test of cross-cultural generalizability. When numerous sites are
not available, the researchers might carry out the first
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generalizability test in the most culturally distant population
available (Muthukrishna et al., 2020). If the effect is still observed,
this represents initial evidence of universality (Norenzayan &
Heine, 2005).

In sum, an ironic legacy of the movement to crowdsource
behavioral research may be showing that scaling science to such
a massive level might be neither efficient nor strictly necessary
for most research findings. The sorts of integrative tests
Almaatouq et al. envision can also be accomplished by a small
team that actively ensures a diversity of analyses and stimuli,
and yet collects data locally or across a few carefully selected cul-
tures rather than globally. In the future, our greatest intellectual
returns on investment may come from “medium” science that pri-
oritizes testing many theories in many ways.
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Abstract

Almaatouq et al. claim that the integrative experiment design
can help “develop a reliable, cohesive, and cumulative theoretical
understanding.” I will contest this claim by challenging three
underlying assumptions about the nature of scientific theories.
I propose that the integrative experiment design should be
viewed as an exploratory framework rather than a means to
build or evaluate theories.

I contest Almaatouq et al.’s claim that the integrative experiment
design can help “develop a reliable, cohesive, and cumulative the-
oretical understanding” (target article, sect. 3.3, para. 1). This
claim relies on three assumptions which I will challenge.

Assumption 1: Experiments in social and behavioral sciences
test theories.
Challenge: Theory tests are, in fact, rare.

The authors assume that statistical null hypothesis tests in social
and behavioral sciences involve a theoretical prediction, but this
assumption has been widely challenged (e.g., Meehl, 1967, 1978,
1990). Recent scholarship in psychological science suggests that
there is a theory crisis (e.g., Eronen & Bringmann, 2021;
Muthukrishna & Henrich, 2019; Oberauer & Lewandowsky, 2019;
Oude Maatman, 2021; Proulx & Morey, 2021; Robinaugh,
Haslbeck, Ryan, Fried, & Waldorp, 2021; van Rooij, 2019), rather
than the “increasing theoretical maturity” (target article, sect. X,
para. X) that the target article claims. Perhaps theoretical amnesia
(Borsboom, 2013) can explain this discord, where researchers can
no longer tell what a theory is, and statistical models occupy the
vacuum created by the absence of theories. Navarro (2021) and
Gelman (2022) warn us against mistaking statistical models and
inferences for scientific theories, just as Gigerenzer (1998) did a
few decades earlier, pointing out that most statistical hypotheses
being tested correspond to misleading surrogates for theory rather
than genuine theoretical predictions. Almaatouq et al. provide no
evidence to convince us otherwise, and their approach is more likely
to integrate/reconcile such surrogates than to make real theoretical
progress.
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Assumption 2: Theories can be meaningfully reduced to a set
of conditions represented by a set of experimental parameters.
Challenge: Theories are more than effects and their boundary
conditions.

In rare cases where a well-specified scientific theory exists, we
need to be explicit about what it entails and how it relates to
the experiment. Almaatouq et al. assume that theories can be
meaningfully captured by a set of (boundary) conditions that
define experimental parameters in the design space. This reduc-
tionist view of theory overlooks the role of mechanisms, explana-
tions, and understanding in scientific theory, and overemphasizes
the mapping between experimental parameters and theory.

There is no universal consensus on what a theory entails
(Winther, 2021) but a rudimentary framework à la Suppes
(1967) will serve here. A scientific theory comprises two distinct
components: An abstract logical calculus using symbolic represen-
tations of a set of propositions, and a set of rules that give the log-
ical calculus empirical content. The formal part of theory is used
to represent, explain, and/or to predict an empirical phenomenon
(Guest & Martin, 2021). However, a formalism capturing aspects
of a phenomenon without offering any mechanistic or causal sci-
entific explanation does not automatically amount to theory
(McMullin, 2008; van Rooij & Baggio, 2021). Theories gain
explanatory power by isolating the causes and uncovering the
mechanism generating empirical regularities (Craver, 2006;
Rohrer, 2018). Yet experiments often aim to discover or confirm
“effects” signifying empirical facts without providing an explana-
tion. Per Cummins (2010), McGurk effect captures a regularity
regarding how speech sounds are perceived across senses, how-
ever, it cannot elucidate why the observed regularity occurs. As
Poincaré (1905) observes: “Science is built up of facts, as a
house is built of stones; but an accumulation of facts is no
more a science than a heap of stones is a house.” Scientific theo-
ries should go beyond accumulating empirical effects and their
boundary conditions to inform us about the structure of systems
they purport to explain (Van Rooij & Baggio, 2021).

Using experiments to isolate effects and boundary conditions
as a means to test theories would still face the issue of underde-
termination of scientific theory by evidence, even if we only
needed theories for description and prediction, not explanation
(Stanford, 2021). We depend on auxiliary assumptions to derive
empirical consequences from a theory, and typically these
assumptions neither uniquely identify distinct theories nor
remain fixed over time. The integrative design purports to sample
the set of experimental parameters comprising such auxiliary
assumptions regarding experimental paradigm, context, popula-
tion of interest, measurements, and so on. In fields where theories
are rarely precise enough to specify these assumptions, any
experimental design would be conceptually removed from the
theory it is meant to test. When theory–experiment mapping is
weak, we can define multiple empirically equivalent theories
that can reasonably account for the observed data. Alternatively,
a given dataset can be used to refute or confirm a given theory
simply by altering how auxiliary assumptions are related to the
theory.

We cannot simply assume that the design space for an integra-
tive experiment effectively and exclusively captures key features of
a theory; extensive theoretical development needs to precede
explicit mapping of theory and experiment.

Assumption 3: Reconciling inconsistent experimental results
may help reconcile incommensurable theories.

Challenge: Incommensurability of scientific theories is not an
empirical problem.

The target article uses the term “(in)commensurability” (target
article, sect. X, para. X) to characterize apparent inconsistencies
or incomparabilities in experimental designs and results, suggest-
ing that integrative design can effectively reconcile or compare
incommensurable theories. In the philosophy of science, semantic
incommensurability means there is no common measure between
theories, and their fundamental concepts cannot be meaningfully
translated or logically related to one another (Oberheim &
Hoyningen-Huene, 2018) while methodological incommensura-
bility involves unattainability of shared, external, neutral method-
ological standards to perform a comparative evaluation theories
(Chang, 2012). Both kinds of theoretical incommensurability
lead to underdetermination of theory choice. Empirical inconsis-
tency described by the authors does not invoke theoretical incom-
mensurability; rather it points to a lack of properly specified
models or uncertainty associated with statistical inferences. True
theoretical incommensurability cannot be reconciled with an inte-
grative (or any other) experimental design, by definition. It has
even been argued that forced reconciliation among incommensu-
rable theories is not desirable and an independent pluralistic exis-
tence is necessary for theoretical progress (Chang, 2012).

Integrative experimental design may serve a crucial exploratory
role in the scientific landscape, by methodically narrowing down
experimental conditions that are necessary to observe a phenom-
enon. Indeed the notion of systematic exploratory experimenta-
tion is not new (Burian, 1997; Steinle, 1997) while largely
underappreciated. The targeted theoretical aims, however, seem
unfeasible if not impossible. There are no empirical shortcuts to
theoretical progress.
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Abstract

Integrative experiment design should be extended to thought-
experiments. Thought-experiments are closely connected to
“real” experiments. They are involved in devising the design
space of theories and possible experiments. The latter may be
partitioned into experiments to be really performed and mere
thought-experiments. The proposed extension of integrative
experiment design lends guidance to a more methodical perfor-
mance of thought-experiments.

There are four reasons why integrative experiment design as
developed by Almaatouq et al. should be extended to thought-
experiments.

First, while thought-experiments differ from “real” experiments
in being performed only mentally (Kuhn, 1977), there is a close
connection: “thought experiment is experiment (albeit a limiting
case of it)” (Sorensen, 1992, p. 3). One tempting idea is that a
thought-experimenter performs an experiment on herself: She
runs her own cognitive processes off-line with a certain hypothetical
input and then reports the outcome. For instance, in the moral
machine experiment (Awad et al., 2018), participants are faced
with a certain decision situation. They take the hypothetical situa-
tion as an input for running their decision-making process off-line
(without actually taking a decision) and report the outcome.

Second, the practice of thought-experimenting is widespread
in science, including the social and behavioural sciences. Here,
thought-experiments play a role in producing, justifying, and
refuting scientific theories. Typical examples from the social sci-
ences are Keynes’s beauty contest scenario (Kornberger &
Mantere, 2020), DuBois’s colour line scenario, or Addams’s sce-
nario where only women are allowed to vote (Hill, 2005). Moral
machine experiments started from ethical thought-experiments
and extended them. Participants were invited to perform a
thought-experiment, and their responses were treated as data in
a real social experiment. The widespread use of thought-
experiments calls for methodological reflection.

Third, the practice of thought-experimenting aggravates the
incommensurability problems with real experiments. The limited
description of a thought-experiment leaves many details unspec-
ified. Thought-experiments are performed only occasionally, one
after the other, without coordinating them with each other and
with theorizing. At most they follow the scheme “question→ the-
ory→ hypothesis→ experiment→ analysis→ revision to theory→
repeat,” as for instance Gettier experiments in epistemology
(Gettier, 1963; Praëm & Steglich-Petersen, 2015). They are not sys-
tematically controlled for variables like implicit biases of the exper-
imenter. There is no systematic variation in their explicit input.
Completeness with respect to the target theory is not prioritized.
The trolley case and its numerous variations are a clear example
of how these problems affect thought-experiments (Dewitt,
Fischhoff, & Salin, 2019; Foot, 1967).

These issues are not sufficiently discussed in the literature. The
latter addresses what a thought-experiment is (Sorensen, 1992),
how thought-experiments are processed (Nersessian, 2007),
whether and how they can provide evidence without empirical
observation (Brown, 1991), what their function and scope is
(Praëm & Steglich-Petersen, 2015), how they relate to arguments
(Norton, 2004), and how to formalize them (Dohrn, 2018;
Williamson, 2007). If incommensurability problems are dis-
cussed, then mostly with a sceptical twist (Machery, 2017).
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What is lacking is a more constructive methodology for when and
how to perform thought-experiments in a coordinated manner that
contributes to building and testing theories.

Fourth, thought-experimenting can be a useful or even indis-
pensable device for integrative experiment design. It arguably
plays a role in coming up with such a design, and the perspective
on thought-experiments naturally supplements the design space.

Having outlined four reasons for giving thought-experiments a
role in integrative experiment design, we distinguish two direc-
tions of relevance. Thought-experiments are relevant to integra-
tive experiment design and vice versa.

Integrative experiment design proceeds from a research ques-
tion to a design space of theories and possible experiments with
regards to relevant dimensions of independent variables.
Thought-experiments are relevant to this procedure.

First, thought-experiments are heuristically useful in ruling out
certain theories and focusing on others. For instance, Galilei’s
thought-experiments ruled out the Aristotelian theory of motion
and oriented scientists towards Newtonian mechanics. Moreover,
Almaatouq et al. suggest that candidate dimensions of relevant
variables are taken “either from the literature or from experience”
(target article, sect. 3.1, para. 6). Yet before the advent of integrative
design, neither literature nor experiments were guaranteed to sys-
tematically survey relevant dimensions. Thought-experimenting pro-
vides an efficient heuristic for identifying these dimensions. Take the
moral machine experiment: One has to check both variables explic-
itly fixed (rich vs. poor, old vs. young, etc.) and inexplicit variables
that may have an influence on the decision (nationality, education,
religion, etc.). One heuristic step in identifying such variables is a
mental simulation of their impact on one’s own decision making.

Second, integrative design proceeds by identifying a universe of
possible experiments in a domain of inquiry. Since not all of these
experiments can be really performed, one has to define an order
of priority and a coordinating design plan for the experiments to
be really performed. Beyond the plan of real experiments, there
are those possible experiments in the universe which are dismissed
as irrelevant, but there are also those which are relevant but not really
performed for various motives: Too complicated, too costly, unethi-
cal, or simply too numerous. Sometimes one can reliably anticipate
the result of an experiment without having to really perform it.
Therefore, among the relevant experiments which are not part of
the planned real experiments, one may select those to be performed
as thought-experiments. These thought-experiments also should be
ordered according to their priority and coordinated with regards
to the explicit and implicit parameters to be controlled for.

The last paragraph already shows how integrative experiment
design is relevant for the practice of thought-experimenting.
Until now, thought-experiments have been largely performed in
an anarchic manner. The proposed extension of integrative exper-
iment design lends guidance to performing them methodically. It
surveys potential thought-experiments, subjects them to an
order of priority, and fixes parameters for explicit variation and
parameters to be controlled for. It renders experimental settings
comparable and reduces problems with incommensurability.

We note in closing that the anarchic mode of performing
thought-experiments may sometimes be useful in playing a disrup-
tive role (Stuart, 2020). Such a role may not be captured by integra-
tive design, but integrative design does not exclude it either.
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Abstract

In many areas of the social and behavioral sciences, the nature of
the experiments and theories that best capture the underlying
constructs are themselves areas of active inquiry. Integrative
experiment design risks being prematurely exploitative, hinder-
ing exploration of experimental paradigms and of diverse theo-
retical accounts for target phenomena.
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Almaatouq et al. argue that one-at-a-time experiments hamper
efficient exploration of target phenomena and theoretical integra-
tion. To address this, they suggest integrative experimentation:
Data collection in a large, predetermined, experimental design
space. Although integrative experimentation addresses many lim-
itations of current experimental practices in the social and behav-
ioral sciences, we argue that integrative experimentation risks
being prematurely exploitative by (a) committing to existing
experimental paradigms and dimensions of the corresponding
design space, and (b) imposing constraints on theory-building.
One-at-a-time experimentation serves a critical role in exploring
useful experimental and theoretical paradigms that can then be
effectively exploited by integrative experimentation.

Integrative experimentation exploits existing experimental
paradigms and dimensions of the corresponding design spaces

Although integrative experimentation facilitates exploration
within the prespecified design space, it exploits the information
– or lack thereof – that informs the characterization of this
space. To perform integrative experiments, scientists must identify
a priori a small set of experimental tasks to invest in. Almaatouq
et al. present several illustrative examples: Peterson, Bourgin,
Agrawal, Reichman, and Griffiths (2021) invested enormous
resources to collect human decisions on ∼10,000 bandit gambles,
Baribault et al. (2018) focused on a specific subliminal priming
task, and Awad et al. (2018, 2020) extensively sampled a space of
trolley problems. In fields where the nature of the experiments
that best measure the underlying constructs are themselves areas
of active inquiry, experiments are run under imperfect knowledge
about the paradigm that will best capture a target phenomenon.
One-at-a-time experimentation enables open-ended, cheap, and
sequentially adaptive exploration of experimental paradigms and
assumptions about the design spaces corresponding to these
paradigms – including exploration along previously unexplored
dimensions of a theoretically infinite design space.

Most areas of social and behavioral sciences use experimental
manipulations and outcomes to measure unobservable constructs.
Social and behavioral scientists in most domains are still engaged
in iterative refinement of the experimental paradigms and dimensions
of the design space that will best measure these constructs (Dubova &
Goldstone, 2023). For instance, while a plethora of paradigms –
including the multisource interference task, the task switching para-
digm, and the N-back task – are utilized for the study of mental effort,
there is little agreement about which experimental manipulations
evoke mentally effortful processes, let alone how these manipulations
would be combined into an integrative experiment (Bustamante et al.,
2022; Koch, Poljac, Müller, & Kiesel, 2018; Kool, McGuire, Rosen, &
Botvinick, 2010; Shenhav et al., 2017; Westbrook & Braver, 2015).
Here, running integrative experiments can hinder solving the main
problem of the field – identifying a set of experimental manipulations
relevant to the construct of mental effort.

Almaatouq et al. give examples of areas in the social and
behavioral sciences that are dominated by a small set of “stan-
dard” experimental paradigms, such as bandit gambles for risky
decision making. In these cases, integrative experimentation can
facilitate efficient exploration of behavior across the space defined
by these paradigms. In other cases, however, integrative experi-
mentation may actually hinder exploration of the target phenom-
ena. For instance, early vision science operated in design spaces
involving artificial visual stimuli. While integrative experimenta-
tion would have yielded theoretical commensurability in this

space, one-at-a-time experiments (i.e., the use of stimuli that dif-
fered from the common design space) enabled a quick expansion
of the space to natural stimuli that in turn led to rapid revisions of
dominant theories of vision (Olshausen & Field, 2005; Zhaoping,
2014). Thus, scientific inquiry may often not justify a large invest-
ment of resources and interinstitutional coordination at the
expense of expanding the design space or developing a number
of completely new tasks.

Integrative experimentation exploits existing theoretical
paradigms

Almaatouq et al. advocate for using integrative experiments to
enforce commensurability of theoretical accounts for the data.
However, this approach may prematurely prioritize some theoret-
ical frameworks over others. For example, the BrainScore bench-
mark integrates neuroimaging studies on visual object recognition
to standardize the comparison of formal theories of neural visual
processing (Schrimpf et al., 2020). Although aiming for inclusivity,
BrainScore’s design required certain commitments, such as the set
of target phenomena and measurements to be accounted for (i.e.,
neural recordings in object recognition experiments) and the
form that the theories can take (i.e., neural networks mimicking
the ventral stream, taking pixels as inputs, and predicting behavioral
responses). Equally justified alternative benchmarks could have led
to different theories of visual processing being prioritized: For
instance, the dataset could have emphasized temporal aspects of
vision, or clumped together object recognition with visual search
tasks when identifying the domain space for theories to capture.
Similarly, standardizing theoretical accounts by the constraints
imposed by integrative experiments, which often focus on a single
experimental paradigm, may hinder exploration of theoretical
frameworks that target different aspects of the phenomena.

Many, if not most, areas of social and behavioral sciences
would benefit from facilitating investigation of a larger class of
theoretical paradigms, rather than constraining theory-building.
For example, cognitive science consists of incommensurable
theoretical paradigms, such as rational analysis and dynamical
systems, which make predictions about different, often nonover-
lapping, aspects of cognitive phenomena. For instance, dynamical
systems modeling seeks to capture the temporal aspects of a cog-
nitive process, whereas rational analysis focuses on the outcomes of
cognition. A diversity of theoretical frameworks informs the design
of new experimental paradigms, broadens the collective conceptual-
ization of the relevant design spaces (Chang, 2012; Massimi, 2022),
and contributes to more comprehensive insights on cognition
(Krakauer, Ghazanfar, Gomez-Marin, MacIver, & Poeppel, 2017;
Marr, 1982; Medin & Bang, 2014). Constraining theory-building
risks reinforcing biases that favor existing experimental paradigms,
further inhibiting exploration of novel experimental and theoretical
frameworks (Dubova, Moskvichev, & Zollman, 2022; Sloman,
Oppenheimer, Broomell, & Shalizi, 2022).

Integrative and one-at-a-time experimentation benefit
fields with different goals at different stages of their
development

Viewed from a resource allocation perspective, scientific endeavors face
an explore–exploit dilemma. Integrative experimentation facilitates
broad characterization of behavior within a specific paradigm and its
corresponding design space. One-at-a-time experimentation encour-
ages iterative refinement of experimental paradigms and the develop-
ment of new theoretical frameworks. We believe a combination of
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integrative and one-at-a-time experimentation is needed to effectively
address the explore–exploit problem in sciences.
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Abstract

Almaatouq et al. view the purpose of research is to map variable-
to-variable relationships (e.g., the effect of X on Y). They also
view theory as this mapping of variable-to-variable relationships
rather than an explanation of why the relationships occur.
However, it is theory as explanation that allows us to reconcile
disparate findings and that should guide application.

We agree with Almaatouq et al. that the integration of disparate
research findings is often inefficient or fails to occur entirely.
However, their proposed solution is based on an inadequate but
widely shared conception of the nature of theory and its impor-
tance for application.

Almaatouq et al. assume the aim of research is to map
variable-to-variable relationships (e.g., the effect of X on Y),
and that current research has failed to do so adequately due to
experiments that use incommensurate variables. Their approach
is to use the literature and experience including previous experi-
ments to identify a large number of variables that form a “design
space” of experimental outcomes. By means such as sampling and
predicting outcomes, boundaries in this space can be established
that specify disparate sets of outcomes. This process results in a
“theory” of how variables work together in complex ways.
Almaatouq et al. remark that their integrative approach may strike
many as atheoretical. In fact, it is atheoretical in that the focus is
entirely on variables as opposed to explanatory theoretical
constructs.

For Almaatouq et al. theory is a mapping of
variable-to-variable relationships. Their approach entirely ignores
the need for an explanation of why the relationships occur.
Progress in research requires both the observation of variable rela-
tionships and their explanation. Observation informs theory and
theory informs observation. Neither is sufficient, no matter
what the scale of observation.

To illustrate their approach, Almaatouq et al. discuss the phe-
nomenon of group “synergy.” They write that research on the
topic often reaches conflicting conclusions, with some studies
finding that groups outperform individuals and other studies
finding that individuals outperform groups. They lament that,
“researchers in this space have no way to articulate how similar
or different their experiment is from anyone else’s. As a result,
it is impossible to determine… how all of the potentially relevant
factors jointly determine group synergy…” (target article, sect. 1,
para. 4).

However, the idea that research can determine how “all of the
potentially relevant factors” influence the effect of one variable on
another is ill-founded. Effects are always contingent, and the
moderating variables that influence them are unbounded and
evolving. Attempting to circumscribe an effect is a vain pursuit.
Only theoretical explanation can resolve this problem.

Consider Almaatouq et al.’s example of the sort of systematic
examination involving “commensurate” studies they favor, an
investigation of moral dilemmas, “inspired by the trolley prob-
lem,” by Awad et al. (2018). They write that one of the findings
is that the “ethical preference for inaction is primarily concen-
trated in Western cultures” (target article, sect. X, para. X).
However, how stable is this finding?

Interestingly, Awad, Dsouza, Shariff, Rahwan, and Bonnefon
(2020), using data collected from the same source as Awad
et al. (2018), examine the actual trolley problem rather than
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studies inspired by it. They find that the preference for the inac-
tion alternative (e.g., for not switching the trolley to kill one per-
son in order to save five) tends to be greater in Eastern cultures
than in Western ones. Moreover, even within these cultures,
there is variation, such that some countries in the Eastern culture
have a greater preference for inaction than those in the Western
culture. Separately they note that acceptability of the action alter-
native has increased over time. Given the variance of the findings
and their instability over time, what can be their relevance if not
understood by means of underlying theoretical constructs?

Our argument is that the value of a finding lies in its ability to
lead to theoretical understanding. For example, a higher-level the-
oretical explanation arising from the effects observed in moral
dilemma experiments might center on a theoretical construct
such as norms of social responsibility. We might hypothesize
that this construct explains why the effects occur and why they
might not occur in different cultures and contexts with different
norms of social responsibility. Any theory is of course subject
to revision through evaluation of additional evidence, but the
essence of theory lies in the development of explanatory con-
structs that are not tied to any specific set of variables (Calder
et al., 2021). And it is theory, not previously observed variable
relationships, that should guide application (Calder, Phillips, &
Tybout, 1981; Gal & Rucker, 2022, 2023) and that can reconcile
seemingly disparate findings.

Consider, for example, the attraction effect (Huber, Payne, &
Puto, 1982), where adding a choice alternative (the decoy),
which is similar to but inferior to one of the alternatives (the tar-
get) but not the other (the competitor), increases the choice of the
similar but superior alternative. This effect occurs reliably when
the features of the choice alternatives are presented numerically
but not when one of the features is presented perceptually.
These findings indicate when the effect occurs, but not why
numerical and perceptual information produce different effects.
As a result, interest in this paradigm waned.

Introducing a theoretical framework that casts the task
employed to demonstrate the attraction effect as involving cogni-
tive resource allocation addresses this issue. The hypothesis is that
choice is disambiguated by adopting an effort conservation goal
that is accessible for numerical but not the more-complex percep-
tual information provided a means of documenting a perceptual
attraction effect. It entailed reducing the effort required to make
the decoy accessible as a comparison standard for the target
and thus adoptable in making a choice (He & Sternthal, 2023).
This framework has also been shown to account for why repeating
a single persuasive message has a different effect than repeating
different statements that are either truthful or false, and why
the depletion effect and its reversal occur (Calder, He, &
Sternthal, 2023). The introduction of a theoretical framework
thus results in cumulative knowledge across seemingly disparate
effects and paradigms.

We contend that confidence in the explanatory power and scope
of theory is critical to reconciling seemingly disparate findings and
to application in the social and behavioral sciences. Confidence in
research findings arises through theoretical understanding not
from attempting to map variable to variable relationships.
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Abstract

Almaatouq et al. propose an “integrative approach” to increase
the generalisability and commensurability of experiments. Yet
their metascientific approach has one glaring omission (and
misinterpretation of) – the role of sample diversity in generalis-
ability. In this commentary, we challenge false notions of sub-
sumed duality between contexts, population, and diversity, and
propose modifications to their design space to accommodate
sample diversity.

Almaatouq et al. propose an “integrative approach” to increase the
generalisability and commensurability of experiments. They sug-
gest systematically sampling and testing a subset of experiments
– chosen randomly from a design space – to deduce inferences
about the population of all potential experiments. Yet their meta-
scientific approach, which loosely translates the “potential out-
comes framework” underlying experiments (Holland, 1986;
Neyman, 1923; Rubin, 1977) to the science of experimentation
itself, has one glaring omission (and misinterpretation of) – the
role of sample diversity in reasoning generalisability. Their sug-
gestion that “an explicit, systematic mapping of research designs
to points in the design space (research cartography) ensures com-
mensurability” (target article, sect. 3.1, para. 6) is, at best, an
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ex-post exercise to ensure validity, based on the myopic
assumption that “there is nothing special about the subjects…in
principle, what goes for subjects also holds for contexts”
(target article, sect. 2.2, para. 4). In this commentary, we
challenge these false notions of subsumed duality between
contexts, population, and sample diversity, and highlight the
importance of diversity in ensuring commensurability. We pro-
pose modifications to their design space to incorporate sample
diversity.

Almaatouq et al. outline their design space as a Cartesian
product of two factors – population which is “a set of measurable
attributes that characterizes the sample of participants,” and
context which is a “set of independent variables hypothesized
to moderate the effect in question as well as the nuisance
parameter” (target article, sect. 2.2, para. 2). Their conceptualisa-
tion, however, fails to account for myriad factors arising from
the sample and sampling technique itself, which affects the
scope of any experiment. We outline three challenges resulting
from this.

First, as defined, “population” lacks accountability of represen-
tativeness, such as cultural outliers in social and behavioural sci-
ence experiments, a point that has been argued extensively by
critics to metatheories of behaviours (Arnett, 2009; Henrich,
Heine, & Norenzayan, 2010). This evident oversight on diversity
undermines the role that sample features can play in introducing
biases to experiments, invariably leading to methodological nar-
rowness, generating spurious and misleading results (Gurven,
2018; Rad, Martingano, & Ginges, 2018). An integrative frame-
work, therefore, must measure diversity, both between- and
within-countries (Ghai, Fassi, Awadh, & Orben, 2023). Without
a careful consideration of representativeness in selected sampling
approaches and the match of samples to population – be it
through crowdsourcing platforms or distributed collaborative net-
works of different laboratories or sophisticated machine-learning
algorithms – integrative experimental techniques will continue to
yield noisy and biased results, inapplicable beyond specific popu-
lation samples.

Second, integrative techniques must grapple with the limita-
tions of not only imperfect sampling approaches but also the
limiting assumptions in current disciplinary theories (Medin,
Ojalehto, Marin, & Bang, 2017). This is particularly important
in the context of Almaatouq et al., who cite that the “ultimate
goal” of experiments is to arrive at a comprehensive theoretical
understanding of experimental insights. Nonetheless, here,
the authors assume (falsely) that metatheories emerging
from the design space will naturally lead to heterogeneity and
guarantee commensurability. While mapping theoretical
boundaries and engaging in meta-metatheoretical reflections, in
applying integrative experimental approaches, can be valuable
for understanding the generalisability of existing theories,
this does not necessarily address underlying structural
issues contributing to the lack of theoretical diversity (Haeffel
& Cobb, 2022). Our critique speaks broadly to need for
behavioural sciences to see and reason complex adaptive systems
with diverse samples (see Banerjee & Mitra, 2023; Hallsworth,
2023).

Third, acknowledging diversity is important since the costs of
running integrative metaexperiments are largely unequal, thereby
excluding researchers and relevant stakeholders in the Global
South from generating integrated experimental insights. Since,
Almaatouq et al. suggest that an “integrative approach would start

by identifying the dimensions… as suggested … by prior research”
(target article, sect. 3.1, para. 4), it is likely this space will then suffer
from publication biases. Their claim that an integrative approach
“will actually broaden the range of people involved in behavioral
research” (target article, sect. 5.7, para. 1) is, at best, misguided,
given this drawback. Integrative methods may be transferable but
such initiatives are expected to be concentrated and accepted in
Western contexts mostly (Singh, 2022). Thus, while we share the
optimism for large-scale collaborative science, we are less confident
on the ability to draw robust, generalisable conclusions by relying on
integrative approaches only. Overcoming the epistemic marginalisa-
tion of underrepresented groups in integrative experimental designs
arguably is important to achieve this.

In view of these critiques, we propose a modification to their
design space that we think is necessary to unlock the power of
the integrative approach.

Our proposition relates to explicitly measuring (sample) diver-
sity to quantify the heterogeneity within the sample, advancing
the goals of Almaatouq et al. One approach might be using a
scalar measure of representativeness for all population and
contextual characteristics, for any given experimental point.
This scalar measure can then be used to transform and reweigh
the design space for generalisability. For example, the authors’
conceptualisation of the population space merely accounts “for
a set of measurable attributes” rather than a rich and diverse set
of measurable attributes “that characterizes the sample of partic-
ipants” (target article, sect. 2.2, para. 2). As such, their original
design space is unduly influenced by certain population subsam-
ples more than others. Here, sampled experimental points cannot
be fully representative of all potential experiments. Nonetheless,
our approach of first measuring diversity as a scalar index, to
then transform these factors of the design space, just like a
weighted sampling approach, increases reliability of integrative
experiments (Deffner, Rohrer, & McElreath, 2022). One limitation
of this approach is that scalar measures of diversity may vary
depending on the population, as what even counts as diverse
samples will widely differ between the Global North and South
contexts (Ghai, 2022). Here we call on the field to develop new
ways to increase global diversity and analyse which of these might
work best in optimising the design space (Tang, Suganthan, &
Yao, 2006).

Ultimately, given that many new sources of knowledge are
likely to emerge from the Global South and that these are likely
to deviate from Western-centric behavioural insights (Adetula,
Forscher, Basnight-Brown, et al., 2022), accounting for the sam-
ple’s diversity will truly enhance the scope of integrative experi-
mental methods. The future of experimental design must not
only be integrative but also diverse and inclusive.
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Abstract

The integrative experiment design proposal currently only
relates to group results, but downplays individual differences
between participants, which may nevertheless be substantial
enough to constitute a relevant dimension in the design space.
Excluding the individual participant in the integrative design
will not solve all problems mentioned in the target article,
because averaging results may obscure the underlying
mechanisms.

Many of us probably have experienced that fear responses to
certain stimuli, such as spiders or snakes, are not the same
for everyone, even when we are in the same situation. The
difference between such individual responses is evidently not
negligible compared to those elicited by situation-specific condi-
tions. However, this is what Almaatouq et al. suggest when they

downplay the role of individual differences in their otherwise
excellent proposal of integrative experiment design (target article,
sect. 2.2, para. 4). In psychology, the so-called person–situation
debate has been going on for more than a century, and
Almaatouq et al. obviously belong to the “situation” faction.
Although influential studies such as the famous work of
Mischel (1968) have given the “person” faction a backlash since
the second half of the twentieth century, there has been a recent
resurgence in personality psychology that emphasizes the
importance of individual differences (see Roberts & Yoon,
2022). Also in other fields, the importance of the individual has
been recognized for quite some time. Recent approaches towards
personalized medicine and therapy are probably the most
prominent example. A PubMed search for these keywords in
title or abstract yields over 33,000 results within the last 20
years. Personalized approaches can be found, for example, in
treatment of certain forms of leukemia (Bazinet & Kantarjian,
2023) or in autoinflammatory diseases (Miner & Fitzgerald,
2023). In other fields, the importance of the individuality of
behavior has been recognized as well: Even Drosophila shows idi-
osyncratic behavioral differences, which are caused by develop-
mental variations in brain wiring rather than genetic factors
(Linneweber et al., 2020).

However, it is not necessary to resort to personality to see that
individual differences found experimentally in a single experi-
ment can be as large as those possibly found by changing the sit-
uation, thus contradicting Brunswick’s assumption cited in the
target article. In magnitude reproduction tasks, participants
often overestimate small magnitudes and underestimate large
ones, a perceptual bias termed central tendency (Hollingworth,
1910). The central tendency is quantified by 1-slope of repro-
duced magnitude plotted over stimulus magnitude. In a duration
reproduction experiment (Glasauer & Shi, 2022) with randomized
stimuli, individual differences in central tendency ranged from 0.1
to about 0.7 (average 0.44), thus covering almost the whole range
from veridical reproduction (central tendency 0) to stimulus inde-
pendence (central tendency 1). In a different experimental situa-
tion, when the temporal order of the trials followed a random
walk, the average central tendency decreased to 0.11, which
means that in this condition duration reproduction was almost
veridical.

This example shows that individual differences within one
situation can be as large, or even larger, as differences caused
by a change of situation. Thus, individual differences can be
large enough to be eligible as separate design dimension.
However, targeted sampling along that dimension is hardly
possible – which criterion would tell us which individual to
test? Moreover, the inclusion of the individual as explicit
dimension in the design space may often be not viable, because
individuals correspond to discrete variables, and “meaningfully
distinguishing between the various settings of a discrete variable
could require dozens or even hundreds of descriptors” (Eyke,
Koscher, & Jensen, 2021). Notably, this is a problem that might
also affect the proposed dimension population, which could also
be composed of many more different descriptors than can be
tested.

The usual way to deal with individual differences is to
model them as random effect (Yarkoni, 2022). In this view,
individual differences are treated as variation of unknown
origin without interest in the question. Thus, the solution to
the problem of individual differences is to simply constrain
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the theories to the group level so that individual variation even-
tually averages out when groups are sufficiently heterogeneous
and large.

In the study mentioned above (Glasauer & Shi, 2022) instead
of treating individual differences as random effect, we could
explain them by a Bayesian model which assumes that partici-
pants entertain individual beliefs about how sequential
trial-by-trial stimuli are generated. The same model also predicted
the massive change in central tendency from one condition to the
other (0.44 down to 0.11) based on the individual differences
identified in the first condition, that is, without changing the indi-
vidual model parameters. Thus, behavioral differences observed in
different experimental situations do not necessarily indicate actual
changes in participants’ characteristics (such as beliefs, or person-
ality). This latter conclusion does not depend on whether our the-
oretical model is correct: The model demonstrates that it is
possible.

Thus, while a group-level theory might explain the situation-
dependent change, this approach would not allow for a theory
that links observed differences to a variation in individual charac-
teristics. The same holds for Drosophila behavior: Considering
only average behavior could not reveal that individual differences
are not just random but have the distinct reason of being caused
by variation in neuronal wiring.

A possible solution for including individual differences as
important information in the integrative experiment design pro-
posal could be to consider the interindividual variability of the
variable of interest as additional input for the sampling procedure.
Large variability could on the one hand indicate that the particu-
lar context of an experiment is not sufficiently constrained, thus
leaving too much space for individual differences, indicating
design dimensions that have not been included. On the other
hand, in the example above the point in design space that resulted
in small variability was hiding possible interindividual differences,
and thus, from the perspective of theory building, the point with
large variability might be the more interesting one. Thus, a sam-
pling procedure that considers interindividual variability could
help in defining regions in design space that provide either situa-
tions with homogeneous behavioral results, or situations unravel-
ing differences that are of interest for any theory interested in the
individual.
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Abstract

Almaatouq et al. argue that an “integrative experiment design”
approach can help generating cumulative empirical and theoret-
ical knowledge. Here, we discuss the novelty of their approach
and scrutinize its promises and pitfalls. We argue that setting
up a “design space” may turn out to be theoretically uninforma-
tive, inefficient, and even impossible. Designing truly diagnostic
experiments provides a better alternative.

Almaatouq et al. argue that research findings in the behavioral
and social sciences are rarely conclusive and even less integrative
or cumulative. They claim that these insufficiencies largely
originate from a flawed approach to research design and the
“one-at-a-time” procedure of planning and conducting experi-
ments. Almaatouq et al. propose an alternative: “Integrative
experimentation.”

While we share many of the concerns raised in the target arti-
cle, we have reservations about the proposed alternative. First, the
“integrative experimentation” idea is – in principal – not novel.
Similar demands for integrative, diagnostic, and cumulative
experimentation have been voiced repeatedly in the past (e.g.,
Brunswik, 1955; Campbell, 1957; Meehl, 1978; Platt, 1964).
That said, truly cumulative research endeavors and rigid theory
testing has not really been a strength of psychological science so
far. Walter Mischel once called this the “toothbrush problem”
of psychological science: “Psychologists treat other peoples’ theo-
ries like toothbrushes – no self-respecting person wants to use
anyone else’s” (Mischel, 2008). Not much has changed since
then – at least not until the replication crisis hit psychology full
force.

Second, and more importantly, constructing the “design
space,” the first step in Almaatouq et al.’s integrative experimen-
tation approach, is practically very difficult, if not impossible.
Where should the dimensions that constitute a design space
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come from? One problem is that these dimensions are either the-
oretical constructs themselves or at least defined and informed by
theoretical assumptions, and that their number is potentially infi-
nite. Consider the group synergy/group performance example dis-
cussed in the target article: Design space dimensions such as
“social perceptiveness” or “cognitive-style diversity” are theoreti-
cal constructs. The theories that underlie these concepts provide
definitions, locate them in a nomological network, and allow
the construction of measurement tools. The latter is particularly
important because a measurement theory is necessary to test
the construct validity of operationalizations (measures and/or
manipulations) for a given construct (e.g., Fiedler, McCaughey,
& Prager, 2021). So, each design-space dimension turns out to
have its own design space. Constructing design spaces may there-
fore lead to infinite regresses.

Third, and related to our previous point, setting up a design
space is necessarily contingent on both the focal hypotheses as
well as all accompanying auxiliary assumptions, some of which
are relevant for testing (and building) a theory, while others are
not. For instance, operationalizing “cognitive-style diversity”
either as the sum of the within-team standard deviation across
cognitive styles (Aggarwal & Woolley, 2013) or as the average
team members’ intrapersonal cognitive-style diversity score
(Bunderson & Sutcliffe, 2002) may be relevant for testing a mea-
surement theory, yet irrelevant for testing a substantive theory.
Almaatouq et al.’s claim that “All sources of measurable
experimental-design variation are potentially relevant, and deci-
sions about which parameters are relatively more or less impor-
tant are to be answered empirically” (target article, sect. 3, para.
1) disregards the (in our view, important) distinction between
conceptually relevant and conceptually irrelevant design space
dimensions (see Gollwitzer & Schwabe, 2022).

Fourth, all design-space decisions necessarily require a univer-
sal metatheory. Such a metatheory does not exist, and it is
unlikely to appear in the future. To be clear: We do not oppose
to the idea of integrative experimentation. Indeed, we second
Almaatouq et al.’s (and Walter Mischel’s) claim for more theory
building and integration (“cumulative science”). But without a
metatheory that can help us define the design space, a theoreti-
cally guided and targeted “one-at-a-time approach” may eventu-
ally yield more solid cumulative evidence than a theory-free
“integrative experimentation” approach.

Fifth, and finally, since resources and the number of partici-
pants required for conducting experiments are limited, ran-
domly combining potentially infinite design factors is not
efficient. Atheoretical sampling from the design space requires
a tremendous amount of resources, which are better spent test-
ing theories in a most rigid and truly falsification-oriented
fashion.

Instead of randomly sampling from an infinite design space, a
more useful rationale for setting up an integrative experimental
series requires acknowledging a hierarchy regarding the informa-
tiveness and discriminability of potential design factor decisions
(Fiedler, 2017). Design factors that can – either logically or theo-
retically – be defined as more crucial than others (e.g., because
they relate to a core assumption of a theory or provide a strong
test of the boundary conditions of a theory) should be prioritized
over those that are more marginal. For instance, if a theory pre-
dicted that interacting groups outperform nominal groups more
strongly in conjunctive than in additive tasks, an experimental

series might focus on varying conjunctive and additive tasks (or
varying different forms of group interaction), while holding
other features, which are less relevant to a rigid test of this
hypothesis, constant (e.g., culture) or treating these features as
random factors (e.g., sample characteristics).

Indeed, modern learning methodology can support the
identification of the most informative and diagnostic design
factors. However, such models do not learn from random and
independent data, but from results depending on design factors
that were a priori defined, scaled, and considered relevant (or
irrelevant) as well as design-space boundaries set by the
experimenters. To conclude, conducting conclusive research
means (1) improving the precision of formulated hypotheses,
(2) specifying metahypotheses from which (at least some) auxil-
iary assumptions and boundary conditions can be deducted, and
(3) pursuing a systematic, exclusive, and diagnostic testing
strategy. From our perspective, systematic research design does
not mean searching through a maximally affordable design
space, but carefully designing experiments that exclude explana-
tions, alternative phenomena, or assumptions. This goal can
rather be achieved by systematic exclusion than exploration of
possibilities (Wason, 1960). Scaling up such diagnostic experi-
mental series would not require changing the methodological
paradigm: On the contrary, truly integrative, metatheoretical,
conclusive, and cumulative research is nothing less than proper
execution of a long-known and widely accepted experimental
methodology.
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Abstract

Almaatouq et al. propose an integrative experiment design space
combined with large samples for scientific advancement. We
argue recent innovative designs combining closed-loop experi-
ment designs and Bayesian optimisation allow for integrative
experiments at an individual level during a single session, cir-
cumventing the necessity for large samples. This method can
be applied across disciplines, including developmental and clin-
ical research.

Almaatouq et al. propose that to improve the generalisability and
efficiency of the research in the social and behavioural sciences,
experiments should be systematically selected from a large design
space. The authors argue that this approach requires the applica-
tion of the paradigm to large samples and thus extensive collab-
oration. However, we believe that large samples are useful but
not necessary to systematically probe the topography of experi-
mental space. Recently, a conceptually comparable approach
called neuroadaptive Bayesian optimisation (NBO) has been
developed in neuroimaging. NBO does not require large samples
and can operate on an individual level in real time. We propose
this approach can also be generalised to the social and cognitive
sciences to further the design proposed by Almaatouq et al.

NBO combines real-time analysis of participants’ responses
and machine learning into a closed-loop design to find the exper-
imental parameters that maximise the target (cognitive or brain)
measure while sampling across a large design space (Lorenz,
Hampshire, & Leech, 2017) (Fig. 1). Bayesian optimisation (BO)
is an active sampling technique that learns from input data col-
lected during a single-experimental testing session. The algorithm
uses an acquisition function that balances exploration and exploi-
tation to select an experiment (e.g., a particular combination of
characteristics of the presented stimulus) for presentation to the
participant from the experiment design space (Brochu, Cora, &
de Freitas, 2010). Target measures are collected and modelled

across the design space using Gaussian process regression.
Through an iterative process of sampling the search space, a sur-
rogate model of the target response across the full design space is
estimated and updated with every sampling. BO will select the
next experiment in the design space in an explorative manner
early during the session (areas that have not been sampled yet
and for which the uncertainty regarding the relationship with
the target measure is high) and an exploitative manner towards
the end of the session (areas that show the maximum brain/
cognitive response and have been sampled previously such that
predictability of the response is high). The NBO converges on
the area of the design space that maximises the target measure
for that individual participant within a few iterations, if the
target measure is reliable and the effect size is sufficient. In one
early study, researchers constructed an experimental space based
on a meta-analysis of existing literature (as suggested by
Almaatouq et al.), and used NBO with real-time fMRI analysis
to identify cognitive tasks that maximally dissociated
between frontoparietal attention networks at the individual
level (Lorenz et al., 2018). Thus, NBO brings an integrative exper-
iment design approach to the level of the individual through
incorporating the tools of active learning with real-time data
analysis.

We argue that integrative experiment designs as proposed may
have parallels across multiple fields, and interdisciplinary
exchange may be fruitful. NBO is currently being applied in
developmental science to examine social development in infants
(Gui et al., 2022; Wass & Jones, 2023). Developmental researchers
typically preselect a limited range of experimental conditions or
stimuli based on specific theories. Similar to issues in social sci-
ence identified by Almaatouq et al., this has limited progress
because each study only probes selected questions and the rela-
tionship between theoretical models or different experiment
designs remains uncharacterised. In contrast, integrative experi-
ment designs allow experimenters to map brain or behavioural
responses across a larger experimental space, including providing
out-of-sample predictions for stimuli that are unsampled.
This enables developmental researchers to simultaneously test
multiple developmental theories through considering their
predictions for the variation in responses across a larger space,
in accordance with Almaatouq et al.’s proposal. This approach
can be extended to other multidimensional spaces with different
concepts mapped across dimensions of the search space, for
example to explore the influence of contingency or sensitivity
on infant attention.

Beyond testing theories in basic science, we think integrative
experiment designs may also have clinical utility (Lorenz et al.,
2017, 2021). We currently lack objective biomarkers with clinical
utility for psychiatric conditions (Loth, 2023). As in the social sci-
ences described by Almaatouq et al., the field of psychiatry is chal-
lenged by reproducibility issues that stem from heterogeneity in
participant populations, selection of single tasks based on partic-
ular theories, and broad analytic flexibility of the resulting data.
This leads to difficulty with integrating clinical findings from dif-
ferent studies and hinders biomarker discovery. Integrative exper-
iment designs allow researchers to expand the search space across
multiple different tasks or analysis pipelines (Lorenz et al., 2017).
Adaptive designs can then be used to select the task and/or pipe-
line that shows greater individual deviation from population
norms for a particular person, similar to Almaatouq et al.’s pro-
posal of mapping individual-level traits across a design space.
For example, NBO has recently been used to identify tasks
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sensitive to residual network function in individual patients with
stroke and higher dissimilarity in responses in patients compared
to controls (Lorenz et al., 2021). Similarly, an experimental space
can be constructed through characterising the similarity space of the
output of different neuroimaging analysis pipelines and identify a
pipeline with the most experimental sensitive contrasts, illustrating
one way in which the “cartographer” can assign numerical coordi-
nates to different locations in space (Dafflon et al., 2022).

In summary, we argue that the approach proposed by
Almaatouq et al. has relevance beyond the boundaries of social
and behavioural sciences, and can be extended to the individual
level by deploying active learning using real-time feedback during
the data collection session itself (Fig. 1). Current implementations
in developmental and clinical samples indicate that NBO is par-
ticularly promising in samples characterised by high heterogene-
ity. Further, the NBO approach can be generalised to the social
sciences through use of real-time behavioural data collection
(i.e., decisions, reaction times, or opinions). Integrative experi-
ment approaches applied at the individual level using real-time
data collection, such as NBO, will allow us to conduct reliable
research that does not depend on large sample sizes and that
can be applied in screening and clinical programmes, answering
to Almaatouq et al.’s call to produce unbiased scientific findings
that apply to particular real-world contexts.

Financial support. This work is supported by EU SAPIENS (grant number
814302), the Economic and Social Research Council (grant number ES/
R009368/1), and SFARI GAIINS (grant number 10039678). The results lead-
ing to this publication have received funding from the Innovative Medicines

Initiative 2 Joint Undertaking under grant agreement number 777394 for
the project AIMS-2-TRIALS. This Joint Undertaking receives support from
the European Union’s Horizon 2020 research and innovation programme
and EFPIA and AUTISM SPEAKS, Autistica, SFARI. IMI disclaimer: The
funders had no role in the design of the study; in the collection, analyses, or
interpretation of data; in the writing of the manuscript, or in the decision to
publish the results. Any views expressed are those of the authors and not nec-
essarily those of the funders.

Competing interest. None.

References

Brochu, E., Cora, V. M., & de Freitas, N. (2010). A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. https://arxiv.org/pdf/1012.2599.pdf

Dafflon, J., da Costa, P. F., Vasa, F., Monti, R. P., Bzdok, D., Hellyer, P. J., … Leech, R.
(2022). A guided multiverse study of neuroimaging analyses. Nature
Communications, 13(1), 3758. https://doi.org/10.1038/s41467-022-31347-8

Gui, A., Throm, E. V., da Costa, P. F., Haartsen, R., Leech, R., & Jones, E. J. H. (2022).
Proving and improving the reliability of infant research with neuroadaptive Bayesian
optimization. Infant and Child Development, 31(5), 1–6. https://doi.org/10.1002/icd.2323

Lorenz, R., Hampshire, A., & Leech, R. (2017). Neuroadaptive Bayesian optimization and
hypothesis testing. Trends in Cognitive Sciences, 21(3), 155–167. https://doi.org/10.
1016/J.TICS.2017.01.006

Lorenz, R., Johal, M., Dick, F., Hampshire, A., Leech, R., & Geranmayeh, F. (2021). A
Bayesian optimization approach for rapidly mapping residual network function in
stroke. Brain, 144(7), 2120–2134. https://doi.org/10.1093/brain/awab109

Lorenz, R., Violante, I. R., Monti, R. P., Montana, G., Hampshire, A., & Leech, R. (2018).
Dissociating frontoparietal brain networks with neuroadaptive Bayesian optimization.
Nature Communications, 9(1), 1227. https://doi.org/10.1038/s41467-018-03657-3

Loth, E. (2023). Does the current state of biomarker discovery in autism reflect the limits
of reductionism in precision medicine? Suggestions for an integrative approach that

Figure 1 (Haartsen et al.). Overview of the integrative
experiment design proposed by Almaatouq et al.
(inner circle) and how it is operationalised in the neu-
roadaptive Bayesian optimisation (NBO) approach
described in the current proposal (outer circle). This
figure was created with Biorender.com.

36 Commentary/Almaatouq et al.: Beyond playing 20 questions with nature

https://doi.org/10.1017/S0140525X22002874 Published online by Cambridge University Press

https://arxiv.org/pdf/1012.2599.pdf
https://arxiv.org/pdf/1012.2599.pdf
https://doi.org/10.1038/s41467-022-31347-8
https://doi.org/10.1002/icd.2323
https://doi.org/10.1002/icd.2323
https://doi.org/10.1016/J.TICS.2017.01.006
https://doi.org/10.1016/J.TICS.2017.01.006
https://doi.org/10.1016/J.TICS.2017.01.006
https://doi.org/10.1093/brain/awab109
https://doi.org/10.1093/brain/awab109
https://doi.org/10.1038/s41467-018-03657-3
https://doi.org/10.1038/s41467-018-03657-3
https://Biorender.com
https://doi.org/10.1017/S0140525X22002874


considers dynamic mechanisms between brain, body, and the social environment.
Frontiers in Psychiatry, 14, 1–12. https://doi.org/10.3389/fpsyt.2023.1085445

Wass, S., & Jones, E. J. H. (2023). Editorial perspective: Leaving the baby in the bathwater
in neurodevelopmental research. Journal of Child Psychology and Psychiatry and Allied
Disciplines, 64(8), 1256–1259. https://doi.org/10.1111/jcpp.13750

Measurement validity and the
integrative approach

Wendy C. Higginsa* , Alexander J. Gillettb ,

Eliane Deschrijvera and Robert M. Rossb

aSchool of Psychological Sciences, Macquarie University, Sydney, NSW, Australia
and bDepartment of Philosophy, Macquarie University, Sydney, NSW, Australia
wendy.higgins@mq.edu.au, https://researchers.mq.edu.au/en/persons/wendy-
higgins
alexander.gillett@mq.edu.au
eliane.deschrijver@mq.edu.au, https://researchers.mq.edu.au/en/persons/
eliane-deschrijver
robross46@gmail.com, https://researchers.mq.edu.au/en/persons/robert-ross

*Corresponding author.

doi:10.1017/S0140525X23002194, e46

Abstract

Almaatouq et al. propose a novel integrative approach to experi-
ments. We provide three examples of how unaddressed measure-
ment issues threaten the feasibility of the approach and its promise
of promoting commensurability and knowledge integration.

When scientists lack validity evidence for measures, they lack the neces-
sary information to evaluate the overall validity of a study’s conclusions.

Flake and Fried (2020, p. 457)

Questionable measurement practices are widespread in the social
and behavioural sciences and raise serious questions about the
interpretability of numerous studies (Flake & Fried, 2020;
Lilienfeld & Strother, 2020; Vazire, Schiavone, & Bottesini,
2022). Because Almaatouq et al. do not explicitly address mea-
surement, we argue that unresolved measurement issues may
threaten the feasibility and utility of their integrative approach.
Below, we present three measurement concerns.

First, the interpretability of findings from experiments designed
using the integrative approach will rely on the use of valid measure-
ments. Consider the “Moral Machine” experiment (Awad et al.,
2018, 2020), which Almaatouq et al. describe as “seminal.”
Utilising a modified version of the trolley problem, this experiment
evaluated participant’s preferences for how autonomous vehicles
should weight lives in life-or-death situations based on nine differ-
ent dimensions. By assessing these dimensions simultaneously and
collecting responses from millions of participants, Almaatouq et al.
claim that this experiment “offers numerous findings that were nei-
ther obvious nor deducible from prior research or traditional exper-
imental designs” (target article, sect. 4.1, para. 2). One of these key
findings is that participants are willing to treat people differently
based on demographic characteristics when the complexity of a
moral decision is increased. However, the validity of this finding

has been questioned because it may be an artefact of the forced
choice methodology that was used (Bigman & Gray, 2020). In addi-
tion, there is considerable debate in moral psychology about the
external validity of the trolley problem and other sacrificial dilem-
mas (i.e., it is unclear that responses in these tasks predict real-
world decisions or ethical judgements; Bauman, McGraw, Bartels,
& Warren, 2014; Bostyn, Sevenhant, & Roets, 2018). Thus, to our
minds, this example demonstrates that no matter how large and
integrative an experiment might be, evaluating the validity of the
measurements is essential.

Second, the construction of design spaces and the mapping
of experiments onto them relies on valid measurement of design
space dimensions. However, the validity of measurements,
including those obtained from widely used measures, cannot
be assumed. Consider Almaatouq et al.’s identification of social
perceptiveness as a relevant dimension of group synergy research.
They cite four studies that measured social perceptiveness using
the Reading the Mind in the Eyes Test (RMET; Almaatouq,
Alsobay, Yin, & Watts, 2021; Engel, Woolley, Jing, Chabris, &
Malone, 2014; Kim et al., 2017; Woolley, Chabris, Pentland,
Hashmi, & Malone, 2010). However, it is unclear what psycholog-
ical constructs the RMET measures. While the RMET has been
used to measure multiple dimensions of social cognition, includ-
ing “theory of mind,” “emotion recognition,” “empathy,” “emo-
tional intelligence,” “mindreading,” “mentalising,” and “social
perceptiveness,” there is ongoing debate about the relationship
between these constructs and which, if any, of them the RMET
actually measures (Kittel, Olderbak, & Wilhelm, 2022; Oakley,
Brewer, Bird, & Catmur, 2016; Silverman, 2022). Moreover,
despite the extensive use of the RMET (cited over 7,000 times
according to Google Scholar), serious questions have been raised
about the reliability and validity of RMET scores (Higgins, Ross,
Langdon, & Polito, 2023; Higgins, Ross, Polito, & Kaplan, 2023;
Kittel et al., 2022; Olderbak et al., 2015). This means that any
integrative experiment that uses the RMET to measure social
perceptiveness as a dimension of group synergy research will
be very difficult to interpret. Given that vast swathes of measures
used in psychological and social science research lack good
validity evidence (Flake & Fried, 2020), analogous validity concerns
are likely to exist for measures of many dimensions of a given design
space. Thus, measurement validation is a critical and nontrivial con-
sideration for the construction and implementation of the design
spaces at the heart of the integrative approach. Moreover, given
that design spaces are likely to include large numbers of dimensions,
a coherent strategy to handle these issues must be developed other-
wise the integrative approach risks becoming unmanageable in
terms of magnitude and complexity.

Third, measurement incommensurability poses a substantial
challenge to the feasibility and utility of the integrative approach
because knowledge integration relies on valid and commensurable
measurements. Consider depression, one of the most prevalent
mental health conditions worldwide (Herrman et al., 2019).
Fried, Flake, and Robinaugh (2022) recently identified over 280
different depression measures. Extensive variability in the
symptoms assessed by these measures forced them to conclude
that different depression measures “seem to measure different
‘depressions’” (p. 360). Moreover, they found that depression
measures frequently fail to show measurement invariance, mean-
ing that they might measure different things when used in differ-
ent groups or contexts. Fried and colleagues’ examination of
depression measures is an unusually thorough demonstration of
just how serious measurement incommensurability problems
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can be. Nonetheless, there are indications that validity and com-
mensurability problems extend to a diverse range of research areas
which, troublingly, are also pertinent to human welfare, including
child and adolescent psychopathology (Stevanovic et al., 2017);
race-related attitudes, beliefs, and motivations (Hester, Axt,
Siemers, & Hehman, 2023); and well-being (Alexandrova &
Haybron, 2016). While Almaatouq et al. claim that their integra-
tive approach “intrinsically promotes commensurability and con-
tinuous integration of knowledge” (target article, abstract), it is
unclear how the approach can feasibly address incommensurabil-
ity arising from the use of disparate measures and violations of
measurement invariance. Left unaddressed, measurement incom-
mensurability might substantially curtail the knowledge integra-
tion potential of the proposed approach.

To summarise, although we are sympathetic to Almaatouq
et al.’s ambitious attempt to tackle the substantial challenges in
the psychological and behavioural sciences, their lack of engage-
ment with the measurement literature raises serious questions
about their approach. If it is to deliver its intended benefits of
increased commensurability and knowledge integration, then
measurement must be addressed explicitly. It is unclear to us
whether this can be achieved while maintaining the feasibility
of the proposed integrative approach.
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Abstract

Almaatouq et al.’s prescription for more integrative experimental
designs is welcome but does not address an equally important
problem: Lack of adequate theories. We highlight two features
theories ought to satisfy: “Well-specified” and “grounded.” We
discuss the importance of these features, some positive exem-
plars, and the complementarity between the target article’s pre-
scriptions and improved theorizing.
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We appreciate the target article’s criticism of existing social science
experimental methods: Results are often presented without clear
boundary conditions and without making it easy to compare results
across labs. We also appreciate the target article’s main prescription
for empirically addressing these issues: Systematically exploring the
parameters that vary across existing studies and theories. However,
in line with recent criticisms of the social sciences (e.g.,
Muthukrishna & Henrich, 2019), we believe this prescription only
takes us halfway; good theorizing is still essential.

We wish to highlight two features of theories that seem espe-
cially imperative: (1) Well-specified: Theories should specify a
causal process; otherwise it is difficult to generalize out of sample.
(2) Grounded: The specified causal process should not “beg for
explanation,” but instead be explicable in terms of well-
understood processes; otherwise it is harder to build up a coher-
ent scientific enterprise and theories might only superficially be
adding explanatory power. These two features are intuitively
appealing (e.g., Ahn, Kalish, Medin, & Gelman, 1995; Pacer &
Lombrozo, 2017), prescribed by philosophers of science
(Lakatos, 1978; Pearl, 2000; Woodward, 2003), and can be justi-
fied using Bayesian models (Goodman, Ullman, & Tenenbaum,
2011; Griffiths & Tenenbaum, 2009).

Social science theories can satisfy these two properties.
Evolutionary game-theoretic approaches to moral psychology
provide one exemplar (e.g., Hoffman & Yoeli, 2022; Quillien,
2020). For instance, one account for why we donate to ineffective
charities posits that we are partially motivated to give by the rep-
utational benefits, and these reputational benefits can only depend
on information that is easy for others to ascertain and agree upon –
like whether you gave but not the impact of your gift (Burum,
Nowak, & Hoffman, 2020). This account is “grounded” in the
sense that it rests on premises that are consistent with known causal
processes that do not themselves “beg for explanation” – our morals
are subject to evolutionary forces, reputations are a key evolutionary
force, and reputations can only depend on information others have
and are likely to agree upon (e.g., Boyd, 2018; Cosmides, Guzmán,
& Tooby, 2018; DeScioli & Kurzban, 2013; Nowak & Sigmund,
2005). Moreover, this theory is “well-specified” in the sense that it
specifies a causal process – reputational benefits shape our moral
intuitions via biological or cultural evolution. Finally, this causal
process makes clear predictions about generality – for example,
we should be more sensitive to impact when it comes to our kin
or savings decisions (Burum et al., 2020).

Computational models of cognition offer a second exemplar
(e.g., Oaksford & Chater, 1994; Quillien & Lucas, 2023; Xu &
Tenenbaum, 2007). For instance, in one approach to explaining
“anchoring and adjustment’ – the fact that numerical estimates
can be biased in the direction of an arbitrarily selected value pro-
vided one is first asked if the true value is above or below that
arbitrarily selected value – anchors are thought to provide a
“seed” for a cognitive process that only slowly and effortfully
adjusts (Lieder, Griffiths, Huys, & Goodman, 2018a). In this
model, people start at the seed, then sample a nearby numerical
estimate, check the relative plausibility of this estimate, move
toward the new estimate if it is judged to be more plausible,
then repeat this process as long as it seems worth the cognitive
costs. This explanation is “grounded” in the sense that it rests
on plausible assumptions about the scarcity of computational
resources and the need to rely on sampling algorithms instead
of explicit representations of probability distributions (e.g.,
MacKay, 2003; Vul, Goodman, Griffiths, & Tenenbaum, 2014).
This explanation is “well-specified” in the sense that it specifies

a causal process, which suggests boundary conditions – people
are expected to show more of an anchoring bias the fewer compu-
tational resources they allocate to the task, say, due to time con-
straints, cognitive load, or lack of motivation (Lieder, Griffiths,
Huys, & Goodman, 2018b).

We note that well-specified theories might already ameliorate
the issues motivating the target article. The target article is par-
tially motivated by “one-off studies” that seem to contradict
each other because they are each run with different parameter set-
tings and conclusions are over-generalized. However, we believe
such over-generalizations would be less likely if researchers were
forced to limit their conclusions to those warranted by their spec-
ified causal process. Consider research on group-synergies: Some
studies find individuals work better in isolation, while others find
they work better in groups. Such findings may only appear con-
tradictory if we rely on overly broad conclusions – for example,
“groups are synergistic.” If instead, we focused on causal processes
– for example, “groups are useful for division of labor” – and
restrict our conclusions to those warranted by the specified causal
process – for example, “groups will perform relatively better when
the task demands more division of labor” – we would have an eas-
ier time reconciling results across labs – for example, because one
lab used a task that lent itself more to division of labor.

We also note that the target article’s main prescription does not
obviate the need for better theorizing. The authors suggest a system-
atic method of sampling from the parameter values that existing
theories predict might matter (perhaps supplemented by “surrogate
models” – constructed by training a deep neural network on large
amounts of data). However, if existing theories (and surrogate mod-
els) are themselves not well-specified or grounded, it is not obvious
how the prescribed approach will help us get any closer to theories
that are, and without that, it is not obvious that we will not still be
missing key latent variables not yet considered. For instance, the tar-
get article describes one instance (Agrawal, Peterson, & Griffiths,
2020) where the prescribed approach led to new discoveries in the
“Moral Machine” paradigm, such as that people are less likely to
save criminals than law-abiding citizens. However, without good
theorizing, we are left not knowing what is causing these discoveries,
and hence not being able to know their boundary conditions
(beyond the dimensions investigated). Nor is it obvious what
these discoveries teach us about moral psychology, or the social,
cognitive, or biological forces that shape our morals, writ large.

One final note: Without winnowing down the set of theories
under consideration, the target article’s prescribed method may be
unwieldy, since each theory suggests additional variables to system-
atically investigate. Restricting theories to those that are well-
specified and grounded may help reduce the set of theories under
consideration, thereby making the prescribed approach more viable.

Competing interest. None.
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Abstract

We disagree with Almaatouq et al. that no realistic alternative
exists to the “one-at-a-time” paradigm. Seventy years ago,
Egon Brunswik introduced representative design, which offers a
clear path to commensurability and generality. Almaatouq
et al.’s integrative design cannot guarantee the external validity
and generalizability of results which is sorely needed, while rep-
resentative design tackles the problem head on.

We share Almaatouq et al.’s concerns with the lack of commen-
surability and generalizability of experimental findings in the
social and behavioural sciences. However, we disagree that a
“lack of any realistic alternative” (target article, sect. 3, para. 1)
existed, which prompted them to propose integrative design.
Over 70 years ago, Egon Brunswik (1956b, p. 159) saw “intrinsic
shortcomings” in “artificial, systematic [experimental] designs”
regardless of whether or not these designs were implemented
“one-at-a-time” (word in square brackets added). He proposed
representative design as an alternative. This lays a path towards
commensurability and generality as well as a clear vision for the-
oretically and practically valuable research in psychology.

Brunswik (1944, 1955b, 1956a) questioned the ability of sys-
tematic design to yield internally and externally valid results.
He argued that variables may be artificially “tied” or “untied,”
thus making it impossible to rule out the effect of the confound
in the former case and making it impossible to study human func-
tioning in a generalizable way in the latter case. His alternative,
representative design retains the “causal texture of the environ-
ment” to which the human has adapted and to which the
researcher intends to generalize (see Dhami, Hertwig, &
Hoffrage, 2004, for a review). For Brunswik, the effect of specific
variables should be disentangled at the data analysis rather than
data collection stage. By contrast, Almaatouq et al. appear to
accept systematic design and only critique its “one-at-a-time”
implementation, arguing that results are difficult to compare,
aggregate, and generalize. However, their solution to this problem
suffers from the same limitations that Brunswik identified with
systematic design.

Almaatouq et al.’s notion of the “design space” essentially
comprises a large series of environments (combinations of various
variables) from countless one-at-a-time experiments. As
Brunswik (1955a, 1955b) noted, these will potentially include, at
best, environments which are rarely encountered, and most likely,
environments that do not (or cannot) exist in the real world.
While Almaatouq et al. appear to accept Brunswik’s view that
the generalizability over situations is equally, if not more, impor-
tant than that over participants, they fail to recognize the impor-
tance of representative stimulus sampling (and construction; see
Hammond, 1966). There is no way to know which environments
in the design space are representative and which are not. Instead,
Almaatouq et al. are preoccupied with reconciling, replicating, or
even opening the “file drawer” (target article, sect. 5.2, para. 4) of
experimental studies that may lack generality because they were
obtained under unrepresentative conditions.

Almaatouq et al. applaud Peterson, Bourgin, Agrawal,
Reichman, and Griffiths’s (2021) efforts to sample the “space of
possible experiments [i.e., gambles] much more densely” (target
article, sect. 4.2, para. 2) than before. Yet, they do not question
the representativeness of the gambles studied and so the general-
izability of the findings remain unknown. Brunswik’s representa-
tive design (1956a, 1956b) on the contrary, tackles the problem
directly; researchers must first define the “reference class” or “uni-
verse” of stimuli (tasks/situations, e.g., gambles) about which they
want to draw a generalizable conclusion. One then either explic-
itly samples stimuli from this predefined set or constructs stimuli
representative of it. One example where representative design has
cast serious doubt over well-established conclusions based on sys-
tematic design is given by Juslin, Winman, and Olsson (2000) on
the overconfidence phenomenon (for other examples, see Dhami
et al., 2004). Representative design can also avoid potential pitfalls
of Almaatouq et al.’s method such as the need to configure a
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“correct” or “relevant” design space, prioritization of aspects of
the space, and keeping the number of possible experiments to a
manageable level. Additionally, the use of representative design
can be facilitated by virtual reality, and is not hampered by the
need for large participants’ pools (since each individual performs
multiple trials and data are analysed at the individual level).
Simply stated, integrative design cannot guarantee the external
validity and generalizability of results which the social and behav-
ioural sciences sorely need, while representative design tackles the
problem head on.

To us, the crux of the problem that ails the social and behav-
ioural sciences, which Almaatouq et al. do not address, is: What is
the overall goal? Indeed, before any researcher embarks upon
designing a study, let alone a paradigm shift in doing research,
one ought to consider what their goal is. For Brunswik, the
method followed his goal. He envisioned psychology as a science
of “organism–environment relationships” (Brunswik, 1943), and
he provided the “lens model” framework (Brunswik, 1952,
1955a) for theoretically delineating how individuals are adapted
to the environments in which they function (termed probabilistic
functionalism). Note that we are not calling for an outright rejec-
tion of systematic design, but for it to be contextualized within
representative design. In our view, psychology need not have
one single goal or method, but we do agree with Brunswik that
one’s method should follow one’s goal, and that generalizability
is important.

Representatively designed experiments can reveal how humans
are adapted to their environments. Experiments which then alter
specific environmental properties can demonstrate how these
adaptation processes are challenged. Thus, representative design
requires researchers to delineate environmental properties to
understand human environments – something researchers in
the social and behavioural sciences rarely do, not even to deter-
mine the generality of an existing set of results. Understanding
human cognition and behaviour as a function of environmental
properties is also highly relevant for practically applicable
research, and funding bodies and universities are increasingly
rewarding researchers whose findings have impact, thereby pro-
viding further incentive for representative design.

In sum, Brunswik was ahead of his time in recognizing that
systematic design means that researchers would need to be satis-
fied by “plausibility generalizations, … always precarious in
nature – or [be] satisfied with results confined to a self-created
ivory tower ecology” (1956b, p. 110). He provided a methodo-
logical solution to this problem, and a clear theoretical ambi-
tion. Unfortunately, his ideas have been largely ignored,
forgotten, misunderstood, or even ridiculed (for a history
and discussion, see Hammond, 1998; Holleman, Hooge,
Kemner, & Hessels, 2020, 2021). By missing the opportunity
to build on representative design, Almaatouq et al. themselves
contribute to what they see as a fundamental problem in
today’s social and behavioural sciences, that is, not “putting
things together.”
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Abstract

Integrative experimentation will improve on the status quo in
empirical behavioral science. However, the results integrative
experiments produce will remain conditional on the various
assumptions used to produce them. Without a theory of inter-
pretability, it remains unclear how viable it is to address the
crud factor without sacrificing explainability.

When faced with social science research, why is it so hard to
answer the question: What did we learn from this experiment?
A core problem is that many experimenters have come to equate
theories with predicting directional associations, which can nei-
ther formally ground expectations of when data are surprising
nor yield strong experimental tests. Any scientific reform proposal
that starts from data generated by sampling a design space and
expects to get to good theory misconstrues the role of theory in
learning from experiments: To propose a data-generating mecha-
nism with testable implications (Fiedler, 2017; Muthukrishna &
Henrich, 2019; Oberauer & Lewandowsky, 2019).

At the same time, behavioral science is unlikely to change the
world if we do not start taking heterogeneity of effects more
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seriously (Bryan, Tipton, & Yeager, 2021). Integrative experiment
design (target article) elevates heterogeneity by rendering explic-
itly a larger design space from which experiments are sampled.
By applying predictive modeling to test the generalization of sur-
rogate models learned on portions of the space, it addresses the
pervasive illusion that models chosen for their explanatory
power also predict well (Yarkoni & Westfall, 2017). If adopted,
integrative modeling seems well-positioned to improve on the sta-
tus quo of knowledge generation in many domains.

However, like related proposals that attempt to debias data-
driven inferences by “zooming out,” integrative design occupies
an in-between territory in which gestures of completeness have
conceptual value but struggle to find their footing in the form
of stronger guarantees. Here I consider challenges that arise in
(1) trying to separate the results sampled from a design space
from the assumptions that produce them and (2) trying to achieve
a balance between reducing confounds from the crud factor
(Meehl, 1990) and drowning in complexity.

No such thing as unconditional data

A presupposition behind integrative experiment design – and
related proposals like multiverse analysis, which attempts to
amend the limitations of a single analysis by rendering explicitly a
design space to sample from (Steegen, Tuerlinckx, Gelman, &
Vanpaemel, 2016) – is that by zooming out from a narrow focus
(on just a few variables, or a single analysis path) and sampling
results from a larger space, they will produce unbiased evaluations
of a claim. In integrative modeling, tests of surrogate models take
the form of prediction problems in a supervised learning paradigm,
with the added implied constraint that they must “accurately explain
the data researchers have already observed.”

But the theories that arise from integrative experiment design
will be conditional on more than just the features used to train
them. How to interpret the “tests” of surrogate models is an
important degree of freedom, for example. Measures like sample
complexity can supply requirements to resolve prediction accu-
racy within a chosen error bound, but not what bound should
constitute sufficient predictive performance, or how it should dif-
fer across domains. There is a chicken-and-egg problem in
attempting to separate the experimental findings from the defini-
tion of the learning problem and sampling approach.

If integrative experiment design also incorporates explanatory
methods, and the explanations take the form of causal mecha-
nisms proposed to operate in different regions of the design
space, then this explanatory layer may very well make it easier
for experimenters to draw on domain knowledge, helping retain
predictive accuracy when moving out-of-distribution relative to
a “pure prediction” approach. But this is difficult to conclude
without defining what makes a surrogate model interpretable.

Goldilocks and the crud factor

Both multiverse analysis and integrative experiment design can
seem to presuppose that our prior knowledge can take us just
far enough to produce results more complex than current results
sections, but not so complicated that we get overwhelmed. The
“new kinds of theories” associated with integrative experimenta-
tion are meant to “capture the complexity of human behaviors
while retaining the interpretability of simpler theories.” This
may be possible, but we should be careful not to assume that
we can always zoom out until we find the dimensionality that is

considerably greater than the dimensionality of the problem
implied by the status quo single experiment, but not so great as
to be noncomprehensible to a human interpreter.

If we take seriously Meehl’s notion of the crud factor, we might
easily list hundreds of potential influences, for example, on group
performance, from interpersonal attractions among group mem-
bers to their religious orientations to recent current events.
Even if the prior literature boils some of these down to encom-
passing unidimensional summaries (e.g., religious homogeneity)
there will be many ways to measure each, and many ways to ana-
lyze the results which might have their own consequences. How
do we guarantee that the number of choices that matter yield
interpretable explanations? To take seriously the promises of
approaches like integrative experimentation, we must contextual-
ize them within a theory of interpretability.

Multiverse and integrative experiment design provide solutions
that are more relative than precise: Sampling from the larger space
better captures our fundamental ontological uncertainty about the
true data-generating model than not defining and sampling from
the larger space, but cannot eliminate it. By prioritizing data over
theory, both approaches gesture toward completeness, but cannot
provide guarantees. Under philosophical scrutiny, their clearest
value seems to be rhetorical. Consequently the completeness
that such methods seem to promise can be misleading.

These points should not discourage adoption of integrative
experimentation, which is likely to improve learning from exper-
iments by addressing many important criticisms raised with the
status quo. However, as confident but often informal proposals
scientific reforms abound, it is always worth deep consideration
of what problems are addressed, and what promises, if any, can
be made (Devezer, Navarro, Vandekerckhove, & Buzbas, 2021).
Integrative experiment design is one way of improving learning
from experiments, which can complement but cannot replace the
need to clarify what we learn from any experiment – single or inte-
grative – in the first place. To reform science we will also need to
“zoom in” by formalizing our expectations within a theoretical
framework and foregrounding the conditionality of our inferences.
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Abstract

To succeed, we posit that research cartography will require high-
throughput natural description to identify unknown unknowns
in a particular design space. High-throughput natural descrip-
tion, the systematic collection and annotation of representative
corpora of real-world stimuli, faces logistical challenges, but
these can be overcome by solutions that are deployed in the
later stages of integrative experiment design.

The integrative approach advocated by Almaatouq et al. starts
with mapping a research field onto an n-dimensional design
space that defines the universe of relevant experiments – what
they call “research cartography” (target article, sect. 3.1 para. 2).
They suggest that the design space’s dimensions can be extracted
from available taxonomies, prior experimental research, and prac-
tical experience. However, as they acknowledge, this approach is
vulnerable to unknown unknowns: Taxonomies, prior experi-
ments, and practical experience may all fail to identify important
dimensions which should be included in the design space.

Here, we focus on one way of identifying unknown unknowns:
High-throughput natural description. This approach may help
research cartographers to uncover missing dimensions of the
research design space, at a cost comparable to the later stages of
the integrative experiment design.

To appreciate the value of high-throughput natural descrip-
tion, consider cases where researchers noticed a discrepancy
between the experimental stimuli and the naturalistic variation
of these stimuli. For instance, Schutz and Gillard (2020) showed
that many experiments studying nonspeech auditory perception
used flat tones as stimuli, despite the fact that such tones are unre-
alistic: Their content lacks dynamic changes found in the tempo-
ral structure of naturalistic sounds. Experiments that included
such naturalistic content made novel discoveries about the audi-
tory system. For example, a study of audiovisual integration
showed that tones with a temporal structure similar to impact
sounds, like the sound of a xylophone, but not flat tones, which
lack temporal variation, were reliably integrated with visual

information when participants judged tone duration (Schutz &
Kubovy, 2009).

Similarly, Dawel, Miller, Horsburgh, and Ford (2021) and
Barrett, Adolphs, Marsella, Martinez, and Pollak (2019) showed
that many experiments studying face perception used highly stan-
dardised and posed facial configurations which are not represen-
tative of the real-world variation in facial configurations. When
naturalistic facial configurations are used in experiments, reported
findings differ from previous results. For example, using natural-
istic facial stimuli, Sutherland et al. (2013) found that facial first
impressions have three underlying dimensions (trustworthiness,
dominance, and youthfulness/attractiveness) instead of just two
(trustworthiness and dominance), as previously reported when
standardised facial stimuli were used (Oosterhof & Todorov,
2008; Todorov, Said, Engell, & Oosterhof, 2008).

In these examples, researchers noticed and resolved some dis-
crepancy between the variation of experimental and real-world
stimuli. Such an approach, while useful, does not completely
solve the problem of unknown unknowns. This is because there
may be many more real-world variations in stimuli that could
update one’s understanding of a phenomenon, if they were intro-
duced in experimental designs. However, a researcher cannot
identify them unless they have a thorough description of real-
world variation.

One solution to this issue is “high-throughput natural
description”: The systematic collection and annotation of large,
representative corpora of real-world stimuli to identify unknown
unknowns.

An example in the field of emotion perception demonstrates
the value of this approach. By collecting and annotating 7 million
pictures of faces and 10,000 hours of filmed video from the
internet, Srinivasan and Martinez (2018) discovered that the
emotion-category labels of disgust, anger, sadness, and happiness
are associated with 1, 5, 5, and 17 “distinct” facial configurations,
respectively. Such variation in the range of facial configurations
conveying different emotions was an unknown unknown in the
research cartography of emotion perception, and studies investi-
gating responses to facial configurations expressing certain emo-
tion categories have yet to investigate responses to the entirety
of the observed variation, to the best of our knowledge (Barrett
et al., 2019). Thus, high-throughput natural description can aid
in defining the design space of relevant experiments via the
identification of unknown unknowns.

However, this solution is not an easy fix to the problem of
unknown unknowns. Large-scale naturalistic observation is logis-
tically challenging. Obtaining 7 million images of faces from the
internet is in itself difficult, but the difficulty ramps up if research-
ers wish to obtain a sample of faces from more diverse sources.
Furthermore, large-scale annotation can be as challenging as
large-scale naturalistic observation. For example, creating a corpus
of 7 million faces that is useful for answering different research
questions requires annotating the images for meaningful dimen-
sions. Coding action units (specific facial muscle movements)
manually via human annotators in these images can require
expertise, or can take years when the dataset is extremely large
(Benitez-Quiroz, Srinivasan, & Martinez, 2016; Srinivasan &
Martinez, 2018). Furthermore, the pool of annotators must itself
be (very) large, not only to deal with the size of the corpus, but
also to identify relevant individual and cultural variations in the
way coders perceive the dimensionality of the stimuli.

In sum, while high-throughput natural description aids in
the identification of unknown unknowns of a research design
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space, it introduces significant logistical challenges. However,
these challenges can be surmounted via a combination of mass
collaboration, automation (a use case is already present in the
aforementioned emotion perception example where Srinivasan
& Martinez, 2018, use a computer vision algorithm to annotate
action units in the internet images; Benitez-Quiroz et al., 2016;
Yitzhak et al., 2017), citizen science (Awad et al., 2018, 2020;
Hilton & Mehr, 2021), and gamification (Long, Simson,
Buxó-Lugo, Watson, & Mehr, 2023). In fact, Almaatouq et al.
already propose that these aforementioned solutions could be
deployed in the later stages of the integrative experiment design

Nonetheless, the application of these solutions for executing
high-throughput natural description should not be ignored, as
they amplify concerns about the up-front costs and inclusivity
of the integrative approach. Few research groups may have the
resources to implement an integrative experiment design, and
fewer groups still may be able to solve its unknown unknowns
problem during the research cartography stage. While we are
enthusiastic about the ideas in the target article, we believe it is
necessary to be explicit and constructive about the requirements
of an integrative experiment design approach.
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Abstract

This commentary argues against the indictment of current exper-
imental practices such as piecemeal testing, and the proposed inte-
grated experiment design (IED) approach, which we see as yet
another attempt at automating scientific thinking. We identify a
number of undesirable features of IED that lead us to believe
that its broad application will hinder scientific progress.

After so many years observing the prosecution of p-values and
everyday laboratory life, we are pleased to see a growing number
of researchers turning their attention to critical matters such as
theory development and experimentation (e.g., Proulx & Morey,
2021). But as we transition into these important new debates, it
is crucial to avoid past intellectual excesses. In particular, we
note a tendency to embrace passive technological solutions to
problems of scientific inference and discovery that make little
room for the kind of active theory building and critical thinking
that in fact result in meaningful scientific advances (see Singmann
et al., 2023). In this vein, we wish to express serious reservations
regarding Almaatouq et al.’s critique.

The observation of puzzling, incongruent, and incommensu-
rate results across studies is a common affair in the experimental
sciences (see Chang, 2004; Galison, 1987; Hacking, 1983). Indeed,
one of the central roles of experimentation is to “create, produce,
refine and stabilize phenomena” (Hacking, 1983, p. 229), which is
achieved through an iterative process that includes the ongoing
improvement of experimental apparati (see Chang, 2004;
Trendler, 2009) and relevant variables (Jantzen, 2021). This pro-
cess was discussed long ago by Maxwell (1890/1965), who
described it as removing the influence of “disturbing agents”
from a “field of investigation.”
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Looking back at the history of modern memory research, we
can identify this process in the development of experimental
tasks (e.g., recognition, cued recall) with clear procedures
(study/test phases) and stimuli (e.g., high-frequency words).
This process is also manifest in the resolution of empirical puz-
zles, such as the innumerous exceptions, incongruencies, and
boundary conditions encountered by researchers in the search
for the “laws of memory” (for a review, see Roediger, 2008).
Far from insurmountable, these empirical puzzles have been
continuously resolved through the interplay of tailored experi-
ments and theories (e.g., Cox & Shiffrin, 2017;
Hotaling, Donkin, Jarvstad & Newell, 2022; Humphreys, Bain,
& Pike, 1989; Roediger & Blaxton, 1987; Seamon et al., 1995;
Turner, 2019; Vergauwe & Cowan, 2015). More specifically, can-
didate theories are constructed to explain existing results by pos-
tulating constructs (e.g., “trace strength”) and specifying how
those constructs are related to observables (e.g., “more study
time leads to more trace strength which leads to faster response
times”). These theories also specify what should not be relevant,
thereby identifying potential confounding variables that future
experiments should control. For an exemplary case, consider
the domain of short-term memory, where we can find a large
body of empirical phenomena (e.g., Oberauer et al., 2018) along-
side explanatory accounts that can accommodate them
(e.g., interference-based theories; see Lewandowsky, Oberauer,
& Brown, 2009).

Against this backdrop, it is difficult to find Almaatouq et al.’s
critique convincing. On the one hand, they fail to explain the suc-
cess of existing experimental practices (e.g., piecemeal testing) in
domains such as human memory. On the other, their treatment
case studies such as “group synergy,” which has amassed a wealth
of conflicting findings, do not include any indication that the pro-
cess described above has failed. This omission opens a number of
possible explanations. For example, incongruent results may
reflect experimental artifacts or hidden ceteris paribus clauses
and other preconditions (Meehl, 1990, p. 109) – can we really
say that these procedures have been thoroughly pursued?
Alternatively, incongruent results could be a sign that those
results should not be treated as part of the same “space” in the
first place, that is, that they do not define a cohesive body of
results that can be explained by a common theory.

Moving on to the actual proposal of integrated experiment
design (IED), we find its potential contribution to be largely
negative. Referring back to Maxwell’s (1890/1964) description,
what IED proposes is to allow “disturbing agents” back into the
“field of investigation” as long as they are appropriately tagged
and recorded. It is difficult to imagine how Newton’s laws of
motion could ever emerge from large-scale experiments evaluat-
ing different shapes of objects, velocities, viscosities, surface
textures, and so on. Our main concerns with IED are summarized
below:

(1) By placing a premium on commensurability, IED decreases
the chances of new and unexpected findings (Shiffrin,
Börner, & Stigler, 2018).

(2) By shifting researchers’ resources toward the joint observation
of a large number of factors, IED disrupts the piecemeal
efforts in experimentation and theorization that illuminate
the processes underlying human data generation. For
instance, it makes it difficult to tell an important result
from one caused by a confound (for discussions, see

Garcia-Marques & Ferreira, 2011; Kellen, 2019; Shiffrin &
Nobel, 1997).

(3) IED turns existential-abductive reasoning on its head:
Instead of developing explanatory constructs (e.g., model
development) in response to existing covariational informa-
tion, a construct would be assumed a priori in the form of an
empty vessel, to be later infused by the results of an exper-
iment manipulating factors presumably related to it. For
instance, the construct “attention” would be identified
with the experimental manipulations thought to be relevant
to “attention.” This concern is materialized by the treatment
of the so-called Moral Machine, a statistical model summa-
rizing the observed relationships between moral judgments
and a host of variables, as a bona fide theory of moral
reasoning.

(4) By introducing a large number of factors, IED can easily
degrade researchers’ ability to identify which theoretical com-
ponents are doing the leg work and which ones are failing,
especially when compared to piecemeal testing (e.g.,
Birnbaum, 2008; Dunn & Rao, 2019; Kellen, Steiner,
Davis-Stober, & Pappas, 2020). The recent application of
IED to risky-choice modeling (Peterson, Bourgin, Agrawal,
Reichman, & Griffiths, 2021) illustrates this concern, as it is
unclear which specific circumstances are leading one choice
model to outperform another (e.g., is context dependency
driven by feedback?).

It is our judgment that there is no one best way to do science, and
that attempts to tell scientists how to do their job, including IED,
will slow and hinder progress. IED is solving a problem that does
not exist and introduces a problem that science should do
without.
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Abstract

Integrative experiment design is a needed improvement over ad
hoc experiments, but the specific proposed method has limita-
tions. We urge a further break with tradition through the use
of an enormous untapped resource: Decades of causal discovery
artificial intelligence (AI) literature on optimizing the design of
systematic experimentation.

Almaatouq et al. propose a break from tradition to accelerate sci-
entific progress, and we applaud them for it. However, we urge an

even further shift to incorporate theory and methods from causal
discovery, a subfield of machine learning with decades of research
on artificial intelligence (AI)-guided causal learning and experi-
ment design. Causal discovery has not been well leveraged in
the experimental sciences perhaps because it also breaks from tra-
dition – statistical tradition.

Causal discovery contains a growing collection of methods for
learning multivariate structural causal models (Pearl, 2000; Spirtes
et al., 2000). Design spaces can be represented as a substructure of
a larger structural causal model (illustrated in Fig. 1), making
causal discovery closely aligned with research cartography. It is
not surprising then that some of the challenges faced by integra-
tive experiment design might be overcome with causal discovery.
We focus on three such challenges: Practical application and scal-
ability, confined inferential scope, and unknown causal factors.

Regarding the practical application of design spaces, causal dis-
covery can learn entire causal models from nonexperimental data
alone, but the direction of causal relationships can be difficult to
identify (Hoyer, Janzing, Mooij, Peters, & Schölkopf, 2008; Peters,
Janzing, & Schölkopf, 2011; Peters et al., 2014; Shimizu, Hoyer,
Hyvärinen, & Kerminen, 2006; Shimizu et al., 2011; Spirtes
et al., 2000). Causal discovery can be applied to experimental
data to resolve this limitation. Multiple methods are capable of
combining datasets with: Both experimental and observational
samples, samples with nonidentical variables, and samples from
different contexts and populations (Bareinboim & Pearl, 2016;
Huang et al., 2020; Mooij, Magliacane, & Claassen, 2020; Peters,
Bühlmann, & Meinshausen, 2016). Incorporating these methods
could enable increased flexibility when dealing with practical
study design challenges.

Scalability is another practical issue: The size of these spaces
makes complete search infeasible. Causal discovery methods can
scale to large numbers of variables, however. Even a million var-
iables is possible (Ramsey, Glymour, Sanchez-Romero, &
Glymour, 2017), but this applies to sparse models. In sparse mod-
els, each variable is directly related to only a small number of
other variables. When variables have large numbers of interacting
causes, causal discovery also suffers scalability problems (Spirtes
et al., 2000). However, such situations may not be common in
reality. Like how linear and Gaussian modeling are surprisingly
effective, sparse models often capture the important elements of
a causal system. As alternatives, the active learning methods
Almaatouq et al. point to could be used, and active learning causal
discovery methods also exist (Ghassami, Salehkaleybar, Kiyavash,
& Bareinboim, 2018; Hyttinen, Eberhardt, & Hoyer, 2013a;
Lindgren, Kocaoglu, Dimakis, & Vishwanath, 2018).

Confined inferential scope limits the kinds of information that
can be learned. For example, let X, Y, and Z be variables. Some
study designs allow researchers to learn that X causes Z and Y
causes Z, but prevent researchers from learning whether X mediates
the effect of Y on Z. In a pair of papers, Mayo-Wilson (2011, 2014)
proved: (1) certain causal facts cannot be learned from a system of
experiments that each only investigate a single exposure–outcome
pair, (2) the proportion of unlearnable facts approaches 100% as
the complexity of the system increases, and (3) overcoming this
requires that each experiment measures more variables than an
exposure–outcome pair. By focusing on a single experiment under
different conditions, Almaatouq et al. are at risk of being confined
to a space of causal facts not much greater than the ad hoc exper-
imentation they are trying to break away from.

Researchers ought to simultaneously measure as many relevant
variables as possible. This happens naturally when planning to
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use causal discovery methods. Most causal discovery methods
treat all variables equally, with no labeled outcome variable. It
is normal in causal discovery to cast a wide net and use measure-
ments from a larger number of variables, and then simultaneously
model them with an algorithm. There is a growing body of papers
applying this approach, including some in the social and behavio-
ral sciences (Bronstein, Everaert, Kummerfeld, Haynos, &
Vinogradov, 2022a; Bronstein, Kummerfeld, MacDonald, &
Vinogradov, 2022b; Shen, Ma, Vemuri, & Simon, 2020;
Stevenson et al., 2022).

Unknown causal factors are ubiquitous in science and, unbe-
knownst to the researcher, can modify the context under which
the data were collected. This commonly manifests as latent con-
founding. In the integrative experimental design paradigm it
would occur as a failure to fully specify the design space.
Research cartography could possibly solve this, but it is unclear
how.

In contrast, causal discovery offers multiple solutions to
unknown causal factors. Many causal discovery algorithms are
only correct assuming “causal sufficiency”: That there are
no unknown causal factors causing two or more measured
variables. However there are also many papers developing
theory and methods without assuming causal sufficiency
(Chen et al., 2021; Hyttinen, Hoyer, Eberhardt, & Jarvisalo,
2013b; Ogarrio, Spirtes, & Ramsey, 2016; Spirtes et al., 2000;
Zhang, 2008). In many cases the presence or absence of
unknown causal factors can be identified from measured data,
and there are even causal discovery methods designed to learn
the causal relationships among them (Huang, Low, Xie,
Glymour, & Zhang, 2022; Kummerfeld & Ramsey, 2016; Xie
et al., 2022).

Unfortunately, causal discovery has had limited application in
the experimental sciences. We hope this commentary helps to
raise awareness of these resources. Almaatouq et al. make it
clear that there is a demand for these research products in the
social and behavioral sciences. There is a serious barrier to the
adoption and use of causal discovery: Much of it is buried and
scattered among journals covering relatively unapplied topics
such as theoretical machine learning and philosophy of science.

We expect that in the future causal discovery will gain presence
in journals on experimental methods and design or topics such
as behavioral and brain sciences.
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Abstract

The target article argues researchers should be more ambitious,
designing studies that systematically and comprehensively
explore the space of possible experiments in one fell swoop.
We argue that while “systematic” is rarely achievable, “compre-
hensive” is often enough. Critically, the recent popularization
of massive online experiments shows that comprehensive studies
are achievable for most cognitive and behavioral research
questions.

Almaatouq et al. provide an incisive and welcome critique of the
dominant one-at-a-time paradigm. They argue for integrative
studies that systematically and comprehensively explore the “uni-
verse of possible experiments” (target article, sect. 2.2, para. 1) in
each domain of inquiry. While we are sympathetic to the goal,
Almaatouq et al. overemphasize systematic at the expense of
comprehensive.

As we see it, the core problem with the one-at-a-time
approach is that it is too slow. It is not news that most studies
extrapolate broadly from a miniscule sample of stimuli, subject
demographics, and experimental paradigms, resulting in a
long-running generalizability crisis (Clark, 1973; Henrich,
Heine, & Norenzayan, 2010; Judd, Westfall, & Kenny, 2012;
Yarkoni, 2022). Even large literatures often fail to do much
more than scratch the surface of possibilities (e.g., Hartshorne
& Snedeker, 2013; Peterson, Bourgin, Agrawal, Reichman, &
Griffiths, 2021). It is as if we set out to explore the universe of
possible experiments, but spent most of our time hanging out
at the hotel pool.

In principle, Almaatouq et al.’s integrative experiment
approach is ideal: Find the set of parameters that describe the uni-
verse of possible experiments and then survey systematically.
Unfortunately, this requires better understanding of the phenom-
enon than we usually have. Indeed, the cognitive and behavioral
sciences remain largely in Kuhn’s preparadigmatic phase
(Kuhn, 2012), characterized by conflicting and incommensurate
theories, each with its own set of assumptions, methods, and
observations.

Let us illustrate the difficulty with an easy-to-articulate ques-
tion: Are children better at learning all aspects of syntax or
just certain parts? Answering this question requires comparing
how quickly older and younger learners learn each component
of syntax. The problem is that different theories propose
radically different visions of what syntax is and how it might be
subdivided. Theories differ in terms of whether syntax is
governed by large numbers of highly articulated, abstract rules
that combine structurally simple words; by a small number of
simple rules that combine internally complex words; or by
superimposed, prototype-like patterns, with no distinction
between words and rules; among other possibilities (Chomsky,
2014; Goldberg, 1995, 2009; Hopcroft, Motwani, & Ullman,
2001; Steedman, 2001). Even where theorists agree on the struc-
ture, they disagree on processing, with the same grammatical
patterns subserved by different cognitive/neurological systems at
different times or by different people (O’Donnell, 2015; Ullman,
2001).

To make matters worse, none of these are complete theories
that can be applied to arbitrary stimuli. For starters, predictions
depend on ancillary assumptions that are left as open empirical
questions (such as the relative preference for generalizations vs.
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one-off computations). More problematically, different theories
often prioritize explaining distinct phenomena (common or rare
utterances; highly productive patterns or semi-idiomatic expres-
sions; early child language or mature usage; similarities across lan-
guages or cross-linguistic differences); one theory may not make
clear predictions about the core motivating phenomena for
another, and vice versa. While we believe this reflects the difficulty
of the problem, not the diligence of the researchers, the outcome
is the same: There is a lot of theoretical progress lying between
here and the integrative experiments proposed by Almaatouq
et al.

Even our example above underestimates the problem.
Almaatouq et al. focus primarily on sampling from a stimulus
space, not a task space. Two of their examples (trolley problems
and risky-choice scenarios) are narrowly defined paradigms for
studying much broader phenomena (moral reasoning and deci-
sion making under uncertainty). Their third example (masked
cueing) does involve manipulating some task parameters beyond
the stimuli themselves, but remains tied to a narrowly circum-
scribed task.

This might be fine if we fully understood the relationship
between tasks and the underlying cognitive processes, but mostly
we do not. Consider, for instance, measures of cognitive control –
itself one of the most thoroughly investigated constructs in cogni-
tive psychology. There are a number of popular tasks used to
study cognitive control, including the masked cuing paradigm
described by Almaatouq et al. Recently, one of us directly com-
pared cognitive control as measured by three closely related
tasks: The Simon, Stroop, and flanker tasks (Erb et al., 2023).
Two massive online experiments with more than 20,000 partici-
pants revealed that these three tasks show strikingly different pat-
terns of change in performance over the lifespan and near-zero
correlations. Thus, integrative studies of cognitive control need
to sample not just across stimuli but also paradigms. However,
it is not clear that the differences across paradigms/tasks can be
easily parameterized. Indeed, advances in our fields often owe
themselves to the creation of new paradigms that open up new
questions or comparisons.

Perhaps we are too pessimistic. Perhaps most questions
resemble trolley problems and few resemble syntax or cognitive
control (though we note that one of Almaatouq et al.’s
three examples actually investigated cognitive control). But we
would hate to predicate moving beyond the one-at-a-time
approach on the widespread feasibility of parameterization. We
worry that this licenses researchers (and editors and funders) to
let perfect be the enemy of better – because we can do much
better.

In particular, Almaatouq et al. may have only been able to find
three examples of systematic exploration of the universe of possi-
ble experiments, but comprehensive explorations abound. This
includes megastudies that test large, diverse sets of stimuli (e.g.,
Breithaupt, Li, & Kruschke, 2022; Brysbaert, Stevens, Mandera,
& Keuleers, 2016; De Deyne, Navarro, Perfors, Brysbaert, &
Storms, 2019; Hartshorne, Bonial, & Palmer, 2014), broad subject
demographics (e.g., Bleidorn et al., 2013; Hartshorne,
Tenenbaum, & Pinker, 2018; Nosek, Banaji, & Greenwald, 2002;
Riley et al., 2016; Soto, John, Gosling, & Potter, 2011; Spiers,
Coutrot, & Hornberger, 2023), or a range of related tasks (e.g.,
Erb, Germine, & Hartshorne, 2023; Hampshire, Highfield,
Parkin, & Owen, 2012). Even without systematic exploration,
these studies have produced major theoretical discoveries. They

have also been instrumental in identifying important
Almaatouq et al.-style parameters for subsequent systematic
exploration. Critically, as Almaatouq et al. explain, the technology
exists to conduct megastudies for most cognitive and behavioral
questions, typically at lower aggregate cost than the status quo
(see also Gosling & Mason, 2015; Li, Germine, Mehr,
Srinivasan, & Hartshorne, 2022; Long, Simson, Buxó-Lugo,
Watson, & Mehr, 2023). In short, our critique is of the “yes,
and” variety. Yes, conduct systematic integrative metastudies
when you can. And, when you cannot, conduct less systematic
megastudies.
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Abstract

Generalizations strengthen in traditional sciences, but in psy-
chology (and social and behavioral sciences, more generally)
they decay. This is usually viewed as a problem requiring solu-
tion. It could be viewed instead as a law-like phenomenon.
Generalization decay cannot be squelched because human
behavior is metastable and all behavioral data collected thus
far have resulted from a thin sliver of human time.

Generalizations decay.
Lee J. Cronbach (1975, p. 122)

In traditional scientific disciplines, to use Scriven’s (1956) termi-
nology, generalizations generally strengthen and can even trigger
productive theoretical upheavals. The partial overthrow of
Newton’s mechanics by Einstein’s special theory of relativity
would not have happened had Einstein not generalized the
Galilean principle of relativity in mechanics (also apparent in
Newton’s theory) to electrodynamics. Generalization strengthens
understanding, sometimes at great cost to status-quo theories.
In contrast, in psychology – and more broadly, the social and
behavioral sciences – generalizations decay.

The “problem” of generalization decay has long been the sub-
ject of scholarly attention, yet no satisfactory solution has been
found (Cronbach, 1975; Scriven, 1956). A widely discussed reason
for such decay is that behavioral phenomena are interactively
determined but psychological theories invariably underspecify

the full range of interactions and often misspecify the nature of
effects (Campbell, 1957; Yarkoni, 2022). An optimistic view is
that psychology can overcome generalization decay by adopting
an interactionist approach to theory generation and testing (e.g.,
Cronbach, 1957; Eysenck, 1997). Calls for methodological reform
such as Almaatouq et al.’s proposed “integrative experiment
design” also fall into the optimist’s camp. However, none of the
optimists’ proposals confront the fact that for most topics, psy-
chology does not offer a theoretical basis for knowing how high
the order of interactions must be for generalization decay to be
squelched.

Take Almaatouq et al.’s example where the design space (i.e.,
the space defined by all of the measured independent variables
and putative moderators) has upward of 50 factors. Even if each
factor was binary, the design space would have over a quadrillion
cells. Almaatouq et al. cryptically refer to statistical methods that
could start with a highly circumscribed sample of cells in this
overwhelming space, but these statements do little to inspire con-
fidence in the overall project.

Permitting less ambition, assume a design space of a mere
dozen variables split equally between binary and ternary factors.
This space has 46,656 cells. Imagine that the researchers learn
that, of the 5,667 possible interaction effects, several hundred
are significant including over a dozen with n > 7. Would anyone
have reason for confidence that such higher-order interactions
would replicate if such a costly experiment could ever be repeated?
Even if they were all replicable (an amazingly improbable occur-
rence), would they productively advance fundamental theory in
psychology? After all, Newell’s (1973) concern (the entry point
for Almaatouq et al.) was not mainly about the lack of generaliz-
ability in psychology but, rather, about the slim prospect of theo-
retical unification even among fine examples of work by the best
and brightest minds of his time.

Generalization decay cannot be eliminated through design
mandates or interactionist projects because human behavior is
metastable over time (Gergen, 1973). Psychologists often make
claims about human behavior and cognition as if it applied to
all humans across time, but this is unknowable since virtually
all research participant data have been collected in a sliver of
human history, and even historical records only go back thou-
sands, not hundreds of thousands, of years, as would be required.
However, even if psychologists fully exploited historical records of
“dead minds,” as Atari and Henrich (2023) call for, or even if they
miraculously recovered the full record of humanity’s past, we have
no trace of humanity’s actual future. We do not know what pro-
portion of human existence lies ahead or what metastable states it
will occupy. Our theories do not project us clearly into the future
as in physics, which provides a basis for estimation of physical
transformations of the universe over unimaginable timescales
(Dyson, 1979; Krauss & Starkman, 2000). They do not even pro-
ject us as well into the past. We have no equivalent of the cosmic
microwave background.

Psychologists cannot study the moderating role of social fac-
tors that do not yet exist. When life expectancy is universally
less than 100 years, psychologists cannot formulate a generalizable
theory of lifespan development that applies to humans who might
live in an epoch following actuarial escape velocity – the point at
which remaining life expectancy increases with time due to mor-
tality rates that plummet due to disruptive scientific and techno-
logical breakthroughs (de Grey, 2004). We do not know what
human experience will be like in the future. Imagine that in 50
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years, the interpretation of quantum mechanics (based on evi-
dence or insights that currently do not exist) indisputably favors
the Everettian many worlds hypothesis and it becomes common
knowledge that each of us exists in possibly infinite branches of
decohered worlds – duh! – what then will social psychologists
have to say about the self concept?

Psychology’s uncertainty about humanity’s past and future
may be inevitable, but its comfort with a focus on the moving pre-
sent reveals a parochial disposition that the traditional sciences
outgrew long ago. If young Einstein did not stretch his mind to
imagine whether light waves would appear to him to be at rest
if he were able to run alongside at the speed of light, and if he
did not have Maxwell’s equations to show that the wave-at-rest
counterfactual could not resolve the equations, he may not have
discovered one of the most important theories in the history of
science. Psychology banished introspection as a reliable
method long ago; and it does not have the equivalent of
Maxwell’s equations, but where are its creative Machian
Gedankenexperiments that may lead us out of musty local
minima? The absence of thought experiments that revolutionize
theoretical understanding in psychology is itself a mystery that
deserves scholarly attention.

Returning to Scriven, “science has not advanced by solving
all problems but often by abandoning them…” (1956, p. 339).
If psychology pines for generalizability, resisting the apparent
law of generalization decay, psychologists will need to seek
new problems and ways of understanding. A productive path
forward may be to seek greater consilience with traditional
sciences (Wilson, 1998). Biocosmology offers a promising
recent example (Cortês, Kauffman, Liddle, & Smolin, 2022).
Alternatively, psychology could accept historicism as a metatheor-
etical foundation (Gergen, 1973), and its future might split along
such lines.
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Abstract

We comment on the limits of relying on prior literature when
constructing the design space for an integrative experiment;
the adaptive nature of social and behavioral phenomena and
the implications for the use of theory and modeling when con-
structing the design space; and on the challenges of measuring
random errors and lab-related biases in measurement without
replication.

We welcome this thoughtful and creative set of ideas for improv-
ing experimentation in the social sciences. We offer several points
for discussion that might further clarify and strengthen the
authors’ arguments.

First, how should the design space be constructed? The authors
suggest that the design space from which researchers can sample
various aspects of the phenomena of interest can be constructed
mostly by reviewing past literature. However, past studies are
often a biased sample of the phenomena of interest, driven by
implicit or explicit theories their authors had at the time, by
methodological limitations, or an adherence to a particular exper-
imental paradigm.

An example from the judgment and decision-making literature
is the phenomenon of overconfidence. The assumption that an
experimenter can choose “good general knowledge items” led to
results suggesting that people almost always show overconfidence.
But using the Brunswikian ideas of representative design, later
studies (Gigerenzer, Hoffrage, & Kleinbölting, 1991; Juslin,
1994) showed that the items that had been previously selected
were not representative of the whole population of items people
experience in the real world. By randomly sampling from the
whole population of items, which approximates representative
design, studies showed that the overconfidence effect is not as
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general as previously thought (Juslin, Olsson, & Björkman, 1997;
Juslin, Winman, & Olsson, 2000).

Another example is research on risky choices, where tradition-
ally participants have been presented with summary descriptions
of different options. Later research has shown that risky choices
can be very different when people sample from the options them-
selves rather than relying on a description (Hertwig, Barron,
Weber, & Erev, 2004; Lejarraga & Hertwig, 2021; Wulff,
Mergenthaler-Canseco, & Hertwig, 2018). Relying solely on
prior psychological studies to understand risky choice would
not discover these insights.

Of course, new dimensions can always be added to the design
space as they are discovered by new research, but this poses a
practical problem of the rapidly growing number of experiments
that could potentially be conducted. We therefore propose two
ideas for a more exhaustive construction of the design space.
One is to sample the phenomenon of interest directly. For exam-
ple, Brunswik would sample participants’ behavior in random
intervals during several weeks, recording the behavior of interest
as it occurs in the participants’ natural environments
(Brunswik, 1944). With today’s technological developments,
such experience-based sampling becomes easier to do and
might be a way toward a more exhaustive grasp of the phenome-
non of interest.

The other way to improve the construction of the design space
is to do it collectively by many labs, in particular labs situated in
different disciplines. For example, decades of research in social
psychology suggest many different biases in human social cogni-
tion, which are often contradictory (Krueger & Funder, 2004). A
tighter integration of psychology and network science has enabled
recognizing how some of these biases in fact reflect a well-adapted
cognition in specific social network structures (Dawes, 1989;
Galesic, Olsson, & Rieskamp, 2018; Lee et al., 2019; Lerman,
Yan, & Wu, 2016).

Second, how to deal with adaptive nature of complex social
systems? As the authors point out, social and behavioral phenom-
ena are typically caused by many interacting factors that can be
hard to pin down. An additional, often overlooked property of
these social-cognitive systems is that they are adaptive: They
change over time in response to internal and external factors.
As a consequence, even the most detailed static picture of these
systems would not provide the full understanding of the underly-
ing dynamics. This of course is a problem for both one-shot and
integrative experiments, and it can be addressed by conducting
longitudinal studies of these systems, coupled with theoretical
development. For integrative experiments, however, it introduces
the additional complication and cost of longitudinal studies,
which multiplies the already large number of dimensions of the
design space.

This explosion of potentially important dimensions in integra-
tive experiment design could be tamed by assigning a stronger
role to theory and modeling. The article focuses mostly on their
role in interpreting the results of samples taken from an already
constructed design space. However, theory and computational
models seem essential already in the construction of the design
space. In particular, an integrative theoretical framework con-
structed by a collective, strongly interdisciplinary effort men-
tioned above, could be a useful starting point for developing the
initial design space. Such collective effort could also help recog-
nize parts of the space that are implausible and would hardly
be expected to occur in the real world. Then, computational mod-
eling could be used to further narrow down the space by

investigating which of the dimensions could have a meaningful
influence on the results. Such models could show that some
apparently important dimensions have only a marginal influence
on the system performance. Recognizing this could significantly
narrow the otherwise vast space of possible experiments that
could be run.

Third, what does it mean when results of experiments at par-
ticular points in the design space fail to generalize to other points?
The authors suggest that this might point to an important missing
dimension or even a fundamental limit of explanation of a partic-
ular phenomenon. It is however also possible that the reason is
more prosaic, merely reflecting an inevitable random measure-
ment error. This suggests that the integrative design experiments,
just as one-at-a-time experiments, should be replicated. This
would allow researchers to approximate confidence intervals
around each of the samples from the design space and recognize
what apparent differences between different points can be
expected by chance. Moreover, it is likely that beyond random
error, experiments conducted by any single lab will have some
systematic biases stemming from lab-specific practices that can
be hard to recognize without explicitly comparing labs.
Different data analysts are also likely to reach different conclu-
sions even from exactly the same data, so different labs conduct-
ing experiments from the same design space could reach different
conclusions (Breznau et al., 2022). To the extent that the integra-
tive design experiments require resources that will limit them to a
few larger labs, these biases could go unnoticed.
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Abstract

We expect that consensus meetings, where researchers come
together to discuss their theoretical viewpoints, prioritize the
factors they agree are important to study, standardize their mea-
sures, and determine a smallest effect size of interest, will prove
to be a more efficient solution to the lack of coordination and
integration of claims in science than integrative experiments.

Lack of coordination limits both the accumulation and integration
of claims, as well as the efficient falsification of theories. How is
the field to deal with this problem? We expect that consensus
meetings (Fink, Kosecoff, Chassin, & Brook, 1984), where
researchers come together to discuss their theoretical viewpoints,
prioritize the factors they all agree are important to study, stand-
ardize their measures, and determine a smallest effect size of
interest, will prove to be a more efficient solution to the lack of
coordination and integration of claims in science than integrative
experiments. We provide four reasons.

First, design spaces are simply an extension of the principles of
multiverse analysis (Steegen, Tuerlinckx, Gelman, & Vanpaemel,
2016) to theory-building. Researchers have recognized that any
specified multiverse is just one of many possible multiverses
(Primbs et al., 2022). The same is true for design spaces. People
from different backgrounds and fields are aware of different liter-
atures and might therefore construct different design spaces.
Therefore, in practice a design space does not include all factors
that members of a scientific community deem relevant – they
merely include one possible subset of these factors. While any sin-
gle design space can lead to findings that can be used to generate
new hypotheses, it is not sufficient to integrate existing

hypotheses. Designing experiments that inform the integration
of disparate findings requires that members of the community
agree that the design space contains all relevant factors to corrob-
orate or falsify their predictions. If any such factor is missing,
members of the scientific community can more easily dismiss
the conclusions of an integrative experiment for lacking a crucial
moderator or including a condemning confound. Committing a
priori to the outcome – for example, in a consensus meeting –
makes it more difficult to dismiss the conclusions.

We believe that to guarantee that people from different back-
grounds, fields, and convictions are involved in the creation and
approval of the design space, consensus meetings will be required.
During these consensus meetings, researchers will need to com-
mit in advance to the consequences that the results of an integra-
tive experiment will have for their hypotheses. Examples in the
psychological literature show how initial versions of such
consensus-based tests of predictions can efficiently falsify predic-
tions (Vohs et al., 2021), and exclude competing hypotheses
(Coles et al., 2022). Furthermore, because study-design decisions
always predetermine the types of effects that can be identified in
the design space, varying operationalizations may result in multi-
ple versions of a study outcome that are not proforma compara-
ble. To reduce the risks of a “methodological imperative”
(Danziger, 1990), we need a consensus among experts on the the-
ory and construct validity of the variables being tested.

Second, many of the observed effects in a partial design space
will be either too small to be theoretically interesting, or too small
to be practically important. Determining when effect sizes are too
small to be theoretically or practically interesting can be challeng-
ing, yet it is essential to be able to falsify predictions, as well as to
show the absence of differences between experiments (Primbs
et al., 2023). Due to the combination of “crud” (Orben &
Lakens, 2020) and large sample sizes, very small effect sizes
could be statistically significant in integrative experiments.
Without specifying a smallest effect of interest, the scientific liter-
ature will be polluted with a multitude of irrelevant and unfalsifi-
able claims. For integrative experiments, which require a large
investment of time and money, discussions about which effects
are large enough to matter should happen before data are col-
lected. Many fields that have specified smallest effect sizes of
interest have used consensus meetings to discuss this important
topic.

Third, it is important to note that due to the large number of
comparisons made in integrative experiments, some significant
differences might not be due to crud (i.e., true effects caused by
uninteresting mechanisms), but due to false positives. Strictly
controlling the type 1 error rate when comparing many variations
of studies will lower the statistical power of tests as the number of
comparisons increases. Not controlling for multiple comparisons
will require follow-up replication studies before claims can be
made. Such is the cost of a fishing expedition. Consensus meet-
ings, which have as one goal to reach collective agreement on
which research questions should be prioritized, while coordinat-
ing measures and manipulations across studies, might end up
being more efficient.

Fourth, identifying variation in effect sizes across a range of
combinatorial factors is not sufficient to explain this variation.
To make generalizable claims and distinguish hypothesized effects
from confounding variables, one must understand how design
choices affect effect sizes. Here, we consider machine-learning
(ML) approaches a toothless tiger. Because these models exploit
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all kinds of stochastic dependencies in the data, ML models are
excellent at identifying predictors in nonexplanatory, predictive
research (Hamaker, Mulder, & Van IJzendoorn, 2020; Shmueli,
2010). If there is a true causal model explaining the influence of
a set of design choices and variables on a study outcome, the algo-
rithm will find all relations – even those due to confounding, col-
lider bias, or crud (Pearl, 1995). Algorithms identify predictors
only relative to the variable set – the design space – so even
“interpretable, mechanistic” (target article, sect. 3.3.1, para. 3)
ML models cannot simply grant indulgence in causal reasoning.
Achieving causal understanding through ML tools (e.g., through
causal discovery algorithms) requires researchers to make strong
assumptions and engage in a priori theorizing about causal
dependencies (Glymour, Zhang, & Spirtes, 2019). Here again,
we believe it would be more efficient to debate such consider-
ations in consensus meetings.

We believe integrative experiments may be useful when data
collection is cheap and the goal is to develop detailed models
that predict variation in real-world factors. Such models are
most useful when they aim to explain variation in naturally occur-
ring combinations of factors (as effect sizes for combinations of
experimental manipulations could quickly become nonsensical).
For all other research questions where a lack of coordination
causes inefficiencies, we hope researchers studying the same
topic will come together in consensus meetings to coordinate
their research.
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Abstract

Dominant paradigms in science foster integration of research
findings, but at what cost? Forcing convergence requires central-
izing decision-making authority, and risks reducing the diversity
of methods and contributors, both of which are essential for the
breakthrough ideas that advance science.

The integrative experiment design approach advocated by
Almaatouq et al. represents an intervention to accelerate the con-
vergence of research findings in the social and behavioral sciences.
Observations from the evolution of scientific fields over centuries
lead to questions about whether the results of such an interven-
tion would be uniformly positive. According to Kuhn (1962),
all scientific fields go through initial periods, sometimes spanning
centuries as in the case of physics, during which many concepts
and competing models are proposed. This continues until a
breakthrough insight reconciles discrepancies and establishes a
dominant paradigm around which the field coheres. Dominant
paradigms enable what Kuhn (1962) calls “normal science,” coor-
dinated efforts to refine the paradigm and build evidence; how-
ever, the power structure surrounding a dominant paradigm can
suppress alternative perspectives, making it difficult to prompt
its reconsideration.

These observations from the history of science suggest poten-
tial unintended consequences of the intervention to accelerate
convergence that Almaatouq et al. propose. Two sources of con-
cern are the power structures that typically evolve to maintain
organizing paradigms, and the potential they have to overly con-
strain the breadth of inputs considered, both of which can be
problematic for a young science focused on diverse, multifaceted
phenomena.

Who decides?

Pfeffer (1993) cautioned that fields with higher levels of consensus
get that way via a core group of elite scholars who wield control.
Imposing a framework to foster consensus requires some mecha-
nism for decision making. For instance, what variables are
included or receive more attention? When two groups of research-
ers have converged on the same topic, who gets the naming rights
to the theoretical space? These issues are often sorted out via peer-
review processes and citation of papers, which admittedly is not
“efficient” but incorporates the judgments of many other
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researchers in the field, based on their assessment of the evidence.
And, contrary to the authors’ claim that no integrating frame-
works exist, we point to a few recent examples in work on team
process (i.e., Marks, Mathieu, & Zaccaro, 2001) and team struc-
ture (i.e., Hollenbeck, Beersma, & Schouten, 2012) that have
been built upon by others based on the evidence supporting
them. In the approach proposed by Almaatouq et al., the dimen-
sions are “mapped” onto the design space before the experiment is
run, by a “cartographer” – but how does this occur?

The solution – as proposed – is for machine learning to make
such decisions for us. While an elegant solution sidestepping the
potential of an individual or group of individuals making the deci-
sions, machine-learning algorithms by their very nature have bias
baked into them (e.g., Fu, Aseri, Singh, & Srinivasan, 2022).
Furthermore, while machine learning undoubtedly has a substantial
role to play in many areas of science, machine-learning models can
only analyze the information provided, and are typically not able to
identify variables that have not yet been considered but should be.
While Almaatouq et al. would argue that such machines are flexible,
and adaptive to change, we see this as overly optimistic. Indeed,
across multiple disciplines and experiments, we can say with some
certainty that a status quo – once set – is very difficult to change,
as Kuhn’s (1962) observations of the difficulty of challenging “dom-
inant paradigms” demonstrates.

Another significant challenge stems from the strong incentives
for researchers to introduce novel ideas in order to advance their
careers. As Almaatouq et al. acknowledge, these incentives are at
odds with efforts to promote convergence since there are few
rewards for researchers who contribute to “normal science.”
Though the authors attempt to brush this aside by pointing to
examples from physics, it is important to note that fields requiring
major infrastructure investment also tend to be more hierarchical,
and also have significant struggles with other issues such as sexual
harassment as well as gender gaps in participation and career length
(Huang, Gates, Sinatra, & Barabási, 2020; National Academies of
Science, Engineering, and Medicine, 2018). Thus the efficiency
that can come from centralizing decision-making authority to accel-
erate convergence also risks introducing some of the known prob-
lems associated with consolidating power (Pfeffer, 1993).

Limiting diversity

The imposition of a framework for fostering convergence not only
risks creating problematic power dynamics but also limiting the
diversity of ideas in undesirable ways. Almaatouq et al. argue
that their framework enables different studies to make their mea-
sures “commensurable.” They claim this can facilitate the integra-
tion of research using different methods, however, it most
naturally lends itself to the use of the “high-throughput” tech-
niques they mention, typically online experiments, to generate
the volume of data needed for sampling the design space. This
is likely to result in more uniformity in the methods and measures
used. While some may see this as desirable, we point out that
when different studies using different methods yield convergent
patterns of results, the field can have greater confidence in
those effects, as advocates of “full-cycle research” (e.g., Chatman
& Flynn, 2005) point out. Conversely, findings using the same
measures and methods might make the results of different studies
“commensurable,” but could mask limits to generalizability.
Indeed, just as we have made great strides to sample beyond
undergraduate students, we need to continue to push scientists
to replicate and extend their work beyond that of online samples,

as such samples are limited in their ability to capture rich behav-
ioral outcomes. We also need to continue to broaden connections
across contexts and disciplines to enable surprising new break-
throughs to emerge (Shi & Evans, 2023).

The social and behavioral sciences are at an exciting nexus.
Diversity is finally gaining traction: Historically underrepresented
groups are bringing new theory and ideas to our historically homog-
enous field. Taken-for-granted knowledge is being falsified,
or shown to only apply to the dominant groups. Exciting perspec-
tives are just now being brought to fruition. To borrow from the
author’s terminology, the “unknown unknowns” are just starting
to emerge due to the burgeoning diversity in the field. Will kicking
off an intervention to force convergence, facilitated by machine
learning, bake today’s bias into algorithms that stymie the diversity
that is just starting to take hold in our fields (Daft & Lewin, 1990)?

Financial support. This research received no specific grant from any fund-
ing agency, commercial, or not-for-profit sectors.

Competing interest. None.

References

Chatman, J. A., & Flynn, F. J. (2005). Full-cycle micro-organizational behavior research.
Organization Science, 16(4), 434–447.

Daft, R. L., & Lewin, A. Y. (1990). Can organization studies begin to break out of the nor-
mal science straitjacket? An editorial essay. Organization Science, 1(1), 1–9.

Fu, R., Aseri, M., Singh, P. V., & Srinivasan, K. (2022). “Un”fair machine learning algo-
rithms. Management Science, 68(6), 4173–4195. https://doi.org/10.1287/mnsc.2021.
4065

Hollenbeck, J. R., Beersma, B., & Schouten, M. E. (2012). Beyond team types and taxon-
omies: A dimensional scaling conceptualization for team description. Academy of
Management Review, 37(1), 82–106.

Huang, J., Gates, A. J., Sinatra, R., & Barabási, A.-L. (2020). Historical comparison of gen-
der inequality in scientific careers across countries and disciplines. Proceedings of the
National Academy of Sciences of the United States of America, 117, 4609–4616. https://
doi.org/10.1073/pnas.1914221117

Kuhn, T. S. (1962). The structure of scientific revolutions. University of Chicago Press.
Marks, M. A., Mathieu, J. E., & Zaccaro, S. J. (2001). A temporally based framework and

taxonomy of team processes. Academy of Management Review, 26(3), 356–376.
National Academies of Sciences, Engineering, and Medicine. (2018). Sexual harassment of

women: Climate, culture, and consequences in academic sciences, engineering, and
medicine. National Academies Press. https://doi.org/10.17226/24994

Pfeffer, J. (1993). Barriers to the advance of organizational science: Paradigm develop-
ment as a dependent variable. Academy of Management Review, 18(4), 599–620.

Shi, F., & Evans, J. (2023). Surprising combinations of research contents and contexts are
related to impact and emerge with scientific outsiders from distant disciplines. Nature
Communications, 14(1), Article 1. https://doi.org/10.1038/s41467-023-36741-4

Phenomena complexity, disciplinary
consensus, and experimental versus
correlational research in
psychological science

Dean Keith Simonton*

Department of Psychology, University of California, Davis, Davis, CA, USA
dksimonton@ucdavis.edu
https://simonton.faculty.ucdavis.edu/

*Corresponding author.

doi:10.1017/S0140525X23002339, e58

Commentary/Almaatouq et al.: Beyond playing 20 questions with nature 55

https://doi.org/10.1017/S0140525X22002874 Published online by Cambridge University Press

https://doi.org/10.1287/mnsc.2021.4065
https://doi.org/10.1287/mnsc.2021.4065
https://doi.org/10.1287/mnsc.2021.4065
https://doi.org/10.1073/pnas.1914221117
https://doi.org/10.1073/pnas.1914221117
https://doi.org/10.1073/pnas.1914221117
https://doi.org/10.17226/24994
https://doi.org/10.17226/24994
https://doi.org/10.1038/s41467-023-36741-4
https://doi.org/10.1038/s41467-023-36741-4
https://orcid.org/0000-0002-7709-7977
mailto:dksimonton@ucdavis.edu
https://simonton.faculty.ucdavis.edu/
https://simonton.faculty.ucdavis.edu/
https://doi.org/10.1017/S0140525X22002874


Abstract

The target article ignores the crucial role of correlational meth-
ods in the behavioral and social sciences. Yet such methods are
often mandated by the greater complexity of the phenomena
investigated. This necessity is especially conspicuous in psycho-
logical research where its position in the hierarchy of the sci-
ences implies the need for both experimental and correlational
investigations, each featuring distinct assets.

Almaatouq et al. describe an innovative way to improve experi-
mental research in the behavioral and social sciences. Yet one seri-
ous oversight in their proposed solution stands out: The complete
omission of any discussion of correlational methods. Correlations
are nowhere mentioned in the text nor is there any reference to
the common statistical procedures associated with correlational
research, such as multiple regression, factor analysis, and struc-
tural equation models. Correlational research is especially com-
mon in various social sciences, like sociology, cultural
anthropology, political science, and economics, and such research
plays a major role in psychological science as well. The last point
was treated in a classic paper by Cronbach (1957) titled “The Two
Disciplines of Scientific Psychology,” the two disciplines being
experimental and correlational (see also Tracy, Robins, &
Sherman, 2009). This bifurcation dates back to the earliest years
of psychological research. Where Wilhelm Wundt founded exper-
imental psychology, Francis Galton initiated correlational psy-
chology, both in the latter half of the nineteenth century. But
why do behavioral and social scientists adopt correlational
methods when everybody knows that experimental methods are
superior at making causal inferences? After all, “correlation
can’t prove causation” has become a proverb in research methods
courses.

Ironically, Almaatouq et al. themselves provide a partial
answer when they note “Social and behavioral phenomena exhibit
higher ‘causal density’ (or what Meehl called the ‘crud factor’)
than physical phenomena, such that the number of potential
causes of variation in any outcome is much larger than in physics
and the interactions among these causes are often consequential”
(target article, sect. 2.1, para. 2). In other words, physical phe-
nomena are less complex than behavioral and social phenomena.
To provide an illustration, when Newton formulated his universal
law of gravity with respect to two bodies, he needed only three
independent variables: The mass of each body and the distance
between the body centers. With that key formula he could accu-
rately predict both the trajectories of projectiles and the orbits of
the known planets. In contrast, imagine what is necessary to
account for the romantic attraction between two human bodies.
Easily dozens of variables would be required – far more than
the 20 in the target article title. These would include numerous
demographic variables, personality traits, situational factors, and
various determinants of physical attractiveness. Moreover, these
variables would have to be combined in such a way as to allow
for unrequited love, when one body is attracted but the other
repelled, which has no counterpart in the physical world. That
much given, it is extremely doubtful that even the most compli-
cated equation would ever predict romantic attraction as precisely
and universally as Newton’s gravitational formula. Many intangi-
ble factors, such as interpersonal “chemistry,” would necessarily
be left out.

To be sure, phenomena complexity is by no means the only
reason why researchers will adopt correlational rather than exper-
imental methods. Experimenters must often face severe practical
and ethical limitations that undermine their capacity to address
certain significant questions. Variable manipulation and random
assignment to treatment and control conditions are frequently
rendered impossible except under draconian circumstances (as
in Nazi death camps). Nevertheless, in this commentary I
would like to focus on the complexity issue because that relates
most closely to the rationale for the integrative experiment design
advocated by Almaatouq et al. (for other important implications,
see Sanbonmatsu, Cooley, & Butner, 2021; Sanbonmatsu &
Johnston, 2019).

The philosopher August Comte (1839–1842/1855) was the
first to suggest that the empirical sciences – those that deal
with concrete subject matter (unlike abstract mathematics) –
can be arrayed into a hierarchy. One of the criteria that he
used to determine a discipline’s ordinal placement was the com-
plexity of the phenomena that are the target of investigation.
This complexity helped explain why certain sciences, such as
astronomy, were able to emerge and mature prior to other sci-
ences, such as biology. Because the sciences were not defined
in the same way in Comte’s time, the social and behavioral sci-
ences being largely absent, his scheme has undergone some
modifications to make it more consistent with modern discipli-
nary categories (Cole, 1983). This transformation then sup-
ported empirical research on whether Comte’s hierarchy of the
sciences could claim any validity (Benjafield, 2020; Fanelli,
2010; Fanelli & Glänzel, 2013; Simonton, 2004, 2015; Smith,
Best, Stubbs, Johnston, & Archibald, 2000). The hierarchy has
been validated using multiple indicators, almost entirely objec-
tive but also including subjective ratings of the relative “hard-
ness” of disciplines. The following results are representative
(Simonton, 2015):

Physics . Chemistry ≫ Biology . Psychology ≫. Sociology

Here the physical sciences come first, followed by biology and
psychology, and then sociology. The number of “>” symbols
indicates the degree of separation, for the hierarchy is quantita-
tive, not just ordinal. Thus, physics and chemistry are very close,
and so are biology and psychology, but biology is more distant
from chemistry and sociology is even more distant from
psychology.

It is noteworthy that this hierarchy strongly corresponds with
disciplinary consensus about what constitute the key findings in
the field (Simonton, 2015), the very problem that Almaatouq
et al. were trying to solve with their integrative experiment design.
Yet it is evident that the hierarchy also aligns inversely with
the relative prominence of experimental versus correlational
methods, with psychology appropriately placed near the middle.
However, that should not lead us to belittle correlational research
as inferior. In fact, such methods feature definite advantages over
the experimental. Probably the most significant is the multivariate
response to the 20 questions problem: Why not answer all 20
questions at once using the suitable number of independent var-
iables? And why not use multiple indicators that simultaneously
implement alternative operational definitions for the central
substantive variables? In short, why not use latent-variable
structural equation models? It is not psychology or sociology’s
fault that their phenomena are often so complex that these
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models will incorporate many more variables than a typical exper-
iment. Better yet, within psychological science, those subdisci-
plines that are more correlational exhibit higher replication rates
than those that are more experimental (Youyou, Yang, & Uzzi,
2023; see, e.g., Soto, 2019). That advantage certainly deserves
consideration.
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Abstract

The authors rightly critique existing social sciences approaches.
However, they are too quick to dismiss the criticism that their
proposed paradigm is atheoretical. Social and cognitive theories
are indeed incommensurate, often due to the lack of a unifying
framework. Without proper integration with theoretical frame-
works, their proposal may merely produce a resource-intensive
veneer of thoroughness without substantive improvements to
understanding.

The authors have produced a valuable and timely critique of
widespread approaches to social science research, and I found
much to agree with in their essay. I agree with their claim that
many problems in science are not solved by replicability, nor by
any methods that improve the reliability of experiments (though
these measures are still valuable, as reliability of results is a neces-
sary but insufficient condition for robust science). I agree that
experiments must be better integrated with theory, and that the
cumulative advance of theoretical explanations is a fundamental
goal of science (even if other goals can also exist simultaneously).
And I agree that coherence across results and experiments is crit-
ical, and troublingly lacking in much of the social sciences
(Smaldino, 2019). Nevertheless, I find their approach to theory
development to be a bit hasty.

The authors toe a messy line in their critique of the
“one-at-a-time” approach. Of course, all scientific explanations
leave out large swaths of the complexity of real life. As von
Uexküll (1921) noted over a century ago, it is only by doing “vio-
lence to reality” that science is possible. All scientific theories
decompose their target systems into an artificial set of parts, prop-
erties and relationships. The trouble, in my view, comes not from
trying to construct theories about social systems, but from overcon-
fidence that the particular decomposition associated with a particu-
lar theory constitutes a satisfactory explanation of phenomena.

For the purpose of further elaboration, allow me to propose a
distinction between hypotheses, theories, and theoretical frame-
works (taken from Smaldino, 2023). A hypothesis is a prediction
that if a particular set of assumptions are met, a particular set
of consequences will follow. It is easy to see how problems arise
if hypotheses are tested in isolation. A theory is a set of assump-
tions upon which hypotheses derived from that theory must
depend. Strong theories allow us to generate clear and falsifiable
hypotheses. However, different theories may decompose reality
in different ways and may address qualitatively different questions
about a particular system, making comparisons of competing the-
ories challenging. A theoretical framework is a broad collection of
related theories that all share a common set of core assumptions.
An example of a theoretical framework is Darwinian evolution by
natural selection, from which many subordinate theories have
been derived. A robust framework provides the conditions for
the accumulation of scientific understanding, because consistency
between related theories must be constantly assessed. I think it is
fair to say that there is not currently a single dominant framework
for the social sciences. One likely reason is that there have been
few incentives to develop one. Indeed, there may have been active
selection against proclivities to do so, as that pursuit rarely leads
to easily measured success in the increasingly cutthroat game of
academic science. A single framework may also be undesirable,
as it may preclude useful decompositions needed for certain the-
ories (contra Popper, 1994).
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The “integrative” approach proposed by the authors falls short
in its overreliance on data and its dismissal of the importance of
mechanistic or generative explanations. The approach provided
does try to draw consistency across experiments, and this is laud-
able. But it underplays the value of consistent theoretical frame-
work. This is demonstrated most clearly by the authors’
implication that an interpretable, mechanistic model is essentially
equivalent to a “surrogate model,” which is able to generate data
that look like those collected empirically while remaining agnostic
to similarities in the data-generating processes. I find this impli-
cation troubling. One reason is aesthetic – it is more satisfying
to have a realistic explanation for a process than to simply pro-
duce an alternative process that generates similar outcomes. If
the only objection were aesthetic, it would be easy to dismiss as
mere preference. But the distinction is actually much more serious
than this. A model that accurately represents the mechanisms that
generate data is necessarily robust to changes in the contextual
conditions under which the data are generated. This is because
the assumptions of the model accurately map onto the conditions
of the real world (within reason – all maps are ultimately impre-
cise). So the model can therefore be adjusted to match the new
conditions, or at least will help us to identify the data needed to
revise the model to match those conditions. A surrogate model,
on the contrary, cannot do this, because the mapping between
the model assumptions and the real world is fundamentally inac-
curate. Consider how financial models failed to predict the eco-
nomic crash of 2008, because their models were not
mechanistic and therefore relied on correlations which suddenly
failed to hold (this was not their only failure).

Thankfully, there are already theoretical frameworks that
underpin some robust, testable, and coherent theories of human
behavior. These include cultural evolution (Boyd & Richerson,
1985; Cavalli-Sforza & Feldman, 1981; Mesoudi, 2011) and
human behavioral ecology (Nettle, Gibson, Lawson, & Sear,
2013; Smith & Winterhalder, 1992), which draw on insights
from biological theories of evolution and ecology, as well as
from related work in microeconomics and game theory. These
frameworks give us good prior reasons for incorporating certain
assumptions into our theories while excluding others, because
they relate to fundamental aspects of social life, such as the pres-
ence or absence of particular social learning biases or the use of
prosocial norms as mechanisms for dealing with uncertainty
and risk. One advantage of these frameworks is that they do
not discard, as many other approaches do, the troves of knowl-
edge we have acquired about nonhuman species. Since humans
are, after all, also animals, we are subject to many similar con-
straints and affordances that occur in other species. Consistency
with these data is too often overlooked.
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Abstract

We affirm the utility of integrative modeling, according to which
it is advantageous to move beyond “one-at-a-time binary para-
digms” through studies that position themselves within realistic
multidimensional design spaces. We extend the integrative mod-
eling approach to a target domain with which we are familiar,
the consequences of bilingualism on mind and brain, often
referred to as the “bilingual advantage.” In doing so, we highlight
work from our group consistent with integrative modeling.

The history of science abounds with self-reflections about
whether its questions, methods, and theories are sufficiently rig-
orous to clarify complex unknowns. Metascientific accounts per-
vade our own fields of language and cognition, which
coincidentally coalesced when “20 Questions” was a popular tele-
vision show (Van Deventer, 1952). After Newell’s (1973) prescient
warnings about playing 20 questions with Nature, current views
about language–cognition interactions vary along many meta-
scientific dimensions. We are thus grateful to Almaatouq et al.
for reanimating Newell’s proposal in their paper, which names,
operationally defines, and advocates for an integrative modeling
approach.

Cognitive scientists have long debated how language and cog-
nition interact. These debates take many forms, including the
consequences of bilingualism on mind and brain, often referred
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to as the “bilingual advantage” (see Titone, Gullifer,
Subramaniapillai, Rajah, & Baum, 2017, for historic overview).
The initial rationale of this hypothesis is that people who speak mul-
tiple languages have heightened daily experience suppressing/inhib-
iting knowledge of one language when speaking another (e.g.,
Bialystok, Craik, Klein, & Viswanathan, 2004). Because researchers
presumed that suppression/inhibition is part of a domain-general
cognitive control capacity, the bilingual advantages position hypoth-
esized that this daily practice would preferentially strengthen cogni-
tive control for bilinguals compared to monolinguals, causing them
to perform better on cognitive control tasks.

When the bilingual advantage hypothesis emerged (Bialystok
et al., 2004; see also Peal & Lambert, 1962), it was refreshing in
its celebration of bilinguals’ cognitive capacities compared to
biased and culturally damaging notions of bilingualism as a liabil-
ity (e.g., Goodenough, 1926; Saer, 1923). Nevertheless, it was
much too simple in a “20-questions,” yes–no binary way. While
early findings were supportive, it did not take long for mixed find-
ings to emerge. Relevant to our commentary are researchers’ attri-
butions for the sources of these mixed findings, which we class in
two nonmutually exclusive ways – a “replication crisis” account,
and – building upon Almaatouq et al. – an “integrative model-
ing/design space” account.

A “replication crisis” account presumes that replicable findings
are true, and nonreplicable findings are false. However, jumping to
conclusions prematurely risks perpetuating a 20-questions mindset
by presuming that all studies are interchangeable (i.e., commensu-
rate), when they may differ in a myriad of incommensurate ways
(e.g., Are bilingual and monolingual groups comparably desig-
nated? Are all bilinguals the same in terms of language and cogni-
tive experiences? Are all geographies equally supportive of
bilingualism? Are all cognitive tasks equivalent? Does suppres-
sion/inhibition mean the same thing across all cognitive tasks?).
Further, a potentially erroneous corollary of a reflexive replication
crisis view is that there is one general cognitive reality applicable
to all bilingual people, and that any experiment is an equipotent
reflection of that reality.

In contrast, an “integrative modeling/design space” account
takes mixed findings at face value and actively accounts for system-
atic differences across study details that could have elicited them.
Indeed, much of our field has moved into this post-20-questions
phase of inquiry (e.g., Navarro-Torres, Beatty-Martínez, Kroll, &
Green, 2021), and now investigates the links between individual dif-
ferences among bilinguals and a variety of performance outcomes
(e.g., Wagner, Bekas, & Bialystok, 2023). As one example, our
group developed new tools and methods for capturing nuanced dif-
ferences among bilinguals (language entropy, social network anal-
ysis), including analytic approaches (e.g., machine-learning
approaches such as leave one out cross-validation) that distinguish
explanation and prediction, referred to in the target article
(Gullifer, Pivneva, Whitford, Sheikh, & Titone, 2023; Gullifer &
Titone, 2021; see also Hofman et al., 2021).

As another example compatible with the target article’s research
cartography idea, our group posited the systems framework of bilin-
gualism (Titone & Tiv, 2023; Tiv, Gullifer, Feng, & Titone, 2020;
Tiv et al., 2022; see also Beatty-Martínez & Titone, 2021), which
sketches a design space for language–cognition interactions. This
framework builds upon socioecological accounts of human behav-
ior (e.g., Atkinson et al., 2016; Bronfenbrenner, 1977; de Bot,
Lowie, & Verspoor, 2007), and our prior efforts to encourage
researchers to abandon simple bilingual/monolingual group com-
parisons for tasks that may not tap into the same cognitive

constructs (e.g., Baum & Titone, 2014; Beatty-Martínez & Titone,
2021, 2024; Gullifer & Titone, 2021; Titone & Baum, 2014; Tiv
et al., 2020). Accordingly, people’s individual language and cogni-
tive behaviors are embedded within a multilevel set of nested social
influences (i.e., daily interactions, local neighborhoods, laws regu-
lating language use). Thus, to fully describe language–cognition
interactions among bilinguals (or anyone), one must attend to
these influences, and how participants across studies systematically
vary in these ways. This means that any one study is but a single
point within a much larger space, that mixed findings may be
meaningful, and that conclusions about bilingualism may be less
general or unitary than one might originally believe. Such an
approach respects the complexity of the phenomena such that,
regardless of where the data ultimately lead, our conclusions will
be more rigorously and honestly earned.

In closing, we agree with Almaatouq et al. that it is advantageous
to move beyond “one-at-a-time binary paradigms” through studies
that position themselves within realistic multidimensional design
spaces (i.e., a preplanned meta-analytic approach). We are ever
mindful that our work on language and cognition is conducted
within a unique multilingual city where language use is legally reg-
ulated and often interpersonally, culturally, and politically charged.
Consequently, what is possible for us to capture empirically about
language–cognition interactions will be necessarily impacted by
our unique positionality. Importantly, we are not alone, as every
research group has its own unique positionality that must be consid-
ered. Thus, let us profit from the wisdom and humility implicit in
the Almaatouq et al.’s target article and Newell’s (1973) original pro-
posal, by recognizing that it may not be possible for any one exper-
iment or research group to speak definitively to an entire design
space of causally dense, socially situated behavioral phenomena.
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Abstract

Integrative experiment design promises to foster cumulative
knowledge by changing how we design experiments, build theo-
ries, and conduct research. I support the push to increase com-
mensurability across experimental research but raise several
reservations regarding results-driven and large-team-based
research. I argue that it is vital to preserve academic diversity
and adversarial debate via independent efforts.

The proposed integrative experiment design approach consists of
three steps: (1) Explicitly define the design space of the experi-
ments in terms of features of the decision situation and the pop-
ulation sample, (2) systematically sample from that design space,
and (3) build theories by quantifying the outcome heterogeneity
over that space. This approach will guarantee commensurability
between different experiments and findings and foster cumulative
knowledge. The authors’ concept of “research cartography” is
brilliant – the idea is to itemize, standardize, categorize, and
quantify the information that we typically and only partially
reveal in the Methodology and Discussion sections of our research
papers. The image of a Wikidata-style database containing all
experimental (and in fact, any other) social and behavioral knowl-
edge is incredibly appealing! The Cooperation Databank, for
instance, offers a glimpse of how such a database could look
like (Spadaro et al., 2022). Developing research cartography will
help identify research gaps, established findings, and controversial
problems. The approach will also aid the reuse and reanalysis of
existing data to answer new research questions (Almaatouq,
Rahimian, Burton, & Alhajri, 2022; Rand, Greene, & Nowak,
2012; Tsvetkova, Wagner, & Mao, 2018). In short, whether retro-
spective or prospective, a comprehensive and systematic research
cartography will help consolidate knowledge and stimulate new
research.

The integrative experiment design approach, however,
presses further – steps (2) and (3) propose to consolidate
research and theory-testing efforts by sampling and generalizing
over many points in the experimental design space simultane-
ously, rather than “one-at-a-time.” Yet, these steps are not nec-
essary for commensurability and more importantly, carry
negative implications for diversity, innovation, and productive
debate in academic research. There are several issues I would
like to raise here.

First, the proposed paradigm threatens to entrench and exacer-
bate existing inequalities within and between scholarly communi-
ties. Participating in global research consortia may be open to
many but who leads these consortia will likely befall on those
with status, prestige, and funding. It is hard to overlook the fact
that the authors speak from a position of privilege – they work
at prestigious US universities, with access to hefty research
funds and numerous PhD students and postdoctoral researchers.
The large-scale research they propose is simply not accessible to
many experimental researchers.

Second, the proposed paradigm aims to optimize efficiency in
research but this is a misguided ideal. Academic research is not
just about results but also about exploration and discovery, cri-
tique and debate, learning and training. Consolidating research
activities in hierarchically structured labs or consortia with estab-
lished protocols and routines may reduce labor costs but stifle
entrepreneurship, critical thinking, and iconoclastic innovation.
Based on some of the authors’ empirical examples, the complex-
ities of group synergies imply that different problems would be
best addressed by teams of different size and composition
(Almaatouq, Alsobay, Yin, & Watts, 2021; Mao, Mason, Suri, &
Watts, 2016; Straub, Tsvetkova, & Yasseri, 2023). This calls for
independence, plurality, redundancy, and diversification of
research effort, not consolidation.

Third, in the social and behavioral sciences, raising the ques-
tion is often more important than finding out the answer.
Much like the observer effect related to measuring physical sys-
tems, studying a social system changes it. Posing a specific social
research problem can shape political debate, policy decisions,
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organization strategies, and collective behavior. Consolidating
funding and research efforts forebodes a monopoly over setting
research agendas and directions, the muffling of marginalized
voices, the sidelining of localized problems, and the suppression
of new perspectives and paradigms. Large-scale integrative exper-
iments may be good for providing definitive evidence to integrate
and reconcile existing theories but restricted when it comes to
launching new research agendas.

Related to the latter issue, the proposed result-driven active-
learning sampling strategy for experiments threatens to shift the
focus to effects that are sizeable but not necessarily meaningful
or important. Specifically, certain combinations of context and
population features may be impossible or unlikely and hence,
practically irrelevant. In short, the integrative experiment design
approach does not alleviate and may even exacerbate the thorniest
problem of experimental research – external validity. Explaining
all variation is not always the best strategy for good or efficient sci-
ence: The power of good general theories is not that they are uni-
versally true but that they apply to statistically likely/common
situations and hence, they are useful.

I acknowledge that the authors present integrative experi-
ment design as an additional, and not the only true, approach
to experimentation in the social and behavioral sciences. I
assumed an exaggeratedly antagonistic stance here to caution
against consolidation. There are alternatives, such as adversarial
collaboration (Killingsworth, Kahneman, & Mellers, 2023;
Mellers, Hertwig, & Kahneman, 2001), that can help reconcile
contradictory findings without compromising debate, plurality,
and diversity.
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Abstract

Integrative experiment design assumes that we can effectively
design a space of factors that cause contextual variation.
However, this is impossible to do so in a sufficiently objective
way, resulting inevitably in observations laden with surrogate
models. Consequently, integrative experiment design may even
deepen the problem of incommensurability. In comparison,
one-at-a-time approaches make much more tentative assump-
tions about the factors excluded from experiment design,
hence still seem better suited to deal with incommensurability.

The authors address the problem of how to integrate the results of
independent studies in a way that facilitates knowledge accumula-
tion in psychological science. We agree with the authors that most
experiments as they are currently conducted in psychology have
low information value. The authors claim that this is because
(1) in psychological science the phenomena to be explained are
much more complex and the theories are not precise enough,
so that theories cannot indicate which auxiliary assumptions
might be safely relegated to the ceteris paribus clause, and (2)
in the absence of precise enough theories the practice of designing
experiments one-at-a-time hampers the goal of knowledge accu-
mulation because the results of individual experiments are incom-
mensurate. They infer from this diagnosis that reforming the
scientific practices in psychology toward more reliable studies is
misguided because however reliable individual studies are, they
will nonetheless fail to fit together with one another in a way
that enables knowledge accumulation. They propose that instead
of increasing the reliability of individual studies, we should replace
the one-at-a-time paradigm with integrative experiment design,
which involves constructing a design space that defines all rele-
vant contextual factors and then systematically testing their
effects.

We underline two core problems with this proposal. The first
is that the authors propose a solution that is fraught with intrac-
table problems. The second is that the authors are mistaken in
their diagnosis that incommensurability is an issue that only
applies to hypothetico-deductive approaches that involve testing
alternative explanations one-at-a-time.

The integrative experiment design strategy bears serious simi-
larities to eliminativist induction, also known as the Baconian
method. The essence of this method is that the researchers in a
(sub)discipline first construct an event space in which the context
variables are defined, and then, by eliminating alternative expla-
nations they arrive at an inductive generalization. As long as the
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defined event space effectively covers all aspects of the target phe-
nomenon, the inductive inference made on the basis of observed
instances will be accurate.

However, several philosophers of science such as Goodman
(1983), Popper (1959), Quine (1951), and others have shown in
various ways that this important assumption on which eliminati-
vist induction is based is almost never true, that is, it is impossible
to effectively map out the contextual variations of even a single
phenomenon because the list has infinitely many elements. The
only viable strategy, as the authors point out in line with what
Bacon (1994) suggested four centuries ago, is to find the elements
that make a significant difference. However, determining which
factors would make a significant difference in the contextual var-
iation space is an even harder problem in psychology, because, as
the authors also admit, psychological phenomena are inherently
more causally dense than natural science disciplines such as phys-
ics. But still, the authors suggest, again in line with the Baconian
method, “conducting a small number of randomly selected exper-
iments (i.e., points in the design space) and fitting a surrogate
model” (target article, sect. 3.2, para. 31). However, since only
an omniscient being can have the knowledge of a predefined con-
textual space, no such experiments can be truly random and
hence the researchers cannot avoid the risk that their surrogate
model overfits the experiments they perform. So, that the overfit-
ted model would reflect the initial assumptions of the experiment-
ers more than it reflects the underlying reality it purports to
describe.

An active learning perspective that updates the surrogate
model with new studies is not enough to solve this problem for
two reasons. First, no matter how systematically we vary the
experiments based on whose results we update our surrogate
model, it is very likely that we will ignore critical contextual var-
iables that the prevailing scientific paradigm of the time does not
consider important (and thus not include them in the design
space; also see Kuhn, 1977, for how paradigms shape even the
basic observations). Second (and relatedly), the problem of weigh-
ing or appraising the novel evidence during the update always has
to be surrogate model-laden. For example, because of the high
heterogeneity pertaining to psychological phenomena, two alter-
native surrogate models with different sets of initial experiments
will most probably incorporate different dimensions to be impor-
tant, and thus might place the same experiment in radically dif-
ferent points in the design space. Even if these two surrogate
models are attempted to be combined, which observations
count as valid evidence and how these pieces of evidence are
weighted will be a matter of debate among scientists advocating
different surrogate models.

Consequently, (1) the main assumption of integrative experi-
ment design is that one can effectively define a design space but
it is an impossible task and (2) the problem of theory-ladenness
and incommensurability will not be solved by integrative experi-
ment design. Actually what the authors call “one-at-a-time
approach” still has a better chance of addressing the
incommensurability-related issues that arise from the inherent
complexity of psychological phenomena, because it does not
require researchers to commit themselves to any list of elements
that causes contextual variation but, on the contrary, it requires
the researchers to be actively on the search for contextual variables
that behave in a way that is not predicted by their theory. So, it
allows researchers to devise more severe tests to falsify their theory
if it is indeed incorrect. Assuming that we can know at any point
which elements of contextual variation are important is only

possible through an unjustified indifference to elements outside
the design space we have already defined, and for this reason,
methodologies that depend on this assumption can give us only
an illusion of enabling knowledge accumulation about psycholog-
ical phenomena. And since it would almost always be impossible
to build a consensus among scientists with different perspectives
about the elements that need to be in the design space, encounter-
ing the problem of incommensurability is also inevitable in inte-
grative experiment design. Therefore, methods that depend on
eliminativist induction, such as integrative experiment design,
could not be an effective solution to psychology’s credibility crisis.
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Abstract

I provide a personal perspective on metastudies and emphasize
lesser-known benefits. I stress the need for integrative theories
to establish commensurability between experiments. I argue
that mathematical social scientists should be engaged to develop
integrative theories, and that likelihood functions provide a com-
mon mathematical framework across experiments. The develop-
ment of quantitative theories promotes commensurability
engineering on a larger scale.

When we first executed a metastudy in 2015 (Baribault, 2019;
Baribault et al., 2018), the concept of sampling from a method
space (what the target article calls a “design space”) was central
to its implementation. We had set out to replicate an interesting
effect we had found in a published paper. However, we soon real-
ized that we would need to specify so many details of implemen-
tation – the kinds of things researchers rarely make explicit in
their methods sections – that we felt we could not perform a faith-
ful replication. Of course, we could have reached out to the orig-
inal authors, but we also felt that the literature should to some
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extent be able to stand on its own. Eventually, we decided to be
good Bayesians and allow for uncertainty in our experimental
design. In contrast to a “point experiment,” a metastudy defines
a distribution over the method space, from which we can draw
samples in a kind of Monte Carlo integration over our uncertainty
as to which point experiment best captures the effect of interest.

Our intent was to test a particular type of theory: A statement
that is broader than a single contrast or effect, but is about regions
in the method space where an effect holds. Others have referred to
such regions as the universe of generalization (Cronbach,
Rajaratnam, & Gleser, 1963), constraints on generality (Simons,
Shoda, & Lindsay, 2017), or the boundary of meaning (Kenett
& Rubinstein, 2021) – all invoking metaphors that imply the exis-
tence of some spatially arranged population of possible
experiments.

We were interested in exploring this method space in part to
identify moderators of effects but also to establish invariances.
Invariances were perhaps of greater interest because they speak
to the robustness of effects across sets of exchangeable experiments
– experiments that are not identical, but that are minor variations
on each other such that a reasonable experimenter could have
chosen any one of them to test the theory at hand. In other
words, many randomly sampled experiments are identical in the-
ory, if not necessarily so in practice. We focused on randomiza-
tion specifically because we wanted to determine whether an
effect was robust – that is, whether it was sensitive to irrelevant
perturbations of the study, such as who the participants were,
where the study was conducted, or which #@$%&? masking sym-
bol we chose.

This notion of identity in theory is important, I think. Whether
two experiments can be reasonably compared or jointly analyzed
(i.e., whether they are commensurate) depends not only on how
they relate to one another but also on the theoretical weight
given to that relationship. Without the context of germ theory,
washing hands between patients may seem like a silly exercise,
but in reality handwashing can act as an accidental confounder
if it is not properly controlled. Accordingly, there must be a
role for the formation of theories prior even to the construction
of the method space.

The target article understates the importance of the develop-
ment of integrative theory relative to the experimentation frame-
work. Without a connecting theory, no two experiments (or, for
that matter, observations) are commensurate. With a connecting
theory, it does not seem to matter greatly if the method space
was conceived ahead of time or even at all. Commensurability
engineering – the activity of building experiments such that
they are commensurate – is first and foremost a theoretical exer-
cise. But this invites a new question: If indeed disparate experi-
ments can be made commensurate with a properly integrative
theory, and method spaces only provide commensurability if
there is such a theory, then what justifies the added effort of
designing a metastudy? After all, a space of experiments exists
whether we define one or not and a research program of consec-
utive point experiments constitutes a guided walk in some space,
so is not any collection of point experiments a metastudy?

An underappreciated strength of metastudies is their statistical
efficiency (DeKay, Rubinchik, Li, & De Boeck, 2022; Rubinchik,
2019). In a metastudy, increasing the number of point experi-
ments k reduces the standard error of the mean effect size
above and beyond the total number of participants P. To see
this, consider the equation for the error variance in a random-
effects meta-analysis as a function of the variance in effect sizes

across subjects (62) and the variance in effect sizes across studies
(τ2): s2

d = 62/P + t2/k. For a fixed number of participants,
increasing the number of point experiments (and reducing the
number of participants per study) maximizes estimation accuracy.

Looking ahead, I believe there is much relevant work being
done in the field of mathematical behavioral science. In order
to engineer commensurability at scale, it is critical to develop
quantitative integrated theories. Ideally these would take the
form of likelihood functions – functions that describe the proba-
bility of data patterns under a theory – over the method space. A
likelihood framework for theoretical integration has a number of
advantages. For example, such a framework would be applicable
even with complex theories for complex data. The focus of the
target article seems mostly on linear theories – models that are
composed mostly of effects (or “dependencies”) that change the
mean of some variate in an additive or at most interactive way
– but a well-constructed mathematical likelihood can account
for patterns of any kind and data of any shape.

Even more importantly, likelihoods are inherently commensu-
rate and can act as a universal language in which theories can be
cast for comparison between areas of a method space (whether
intentionally designed or not). Regions A and B of the method
space are identical in theory T if they come with the same likeli-
hood, p(data | A, T ) = p(data | B, T ), and not otherwise. The
development of an integrative theory then boils down to defining
this likelihood for all applicable regions, making all points in the
method space commensurate while at the same time avoiding the
incoherency problem discussed by Watts (2017). Theories of such
scope are currently rare in social science, but we stand to gain
much from their development.
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Abstract

This commentary analyzes the extent to which the incommensu-
rability problem can be resolved through the proposed alterna-
tive method of integrative experiment design. We suggest that,
although one aspect of incommensurability is successfully
addressed (dimensional incommensurability), the proposed
design space method does not yet alleviate another major source
of discontinuity, which we call conceptual incommensurability.

The concept of a design space is Almaatouq et al.’s major and
important contribution to solving the incommensurability prob-
lem that arises in the social and behavioral sciences. The incom-
mensurability problem, which the authors claim is caused in part
by the promotion of “one-at-a-time” experiments that are con-
ducted in theoretical isolation from other relevant experiments,
has resulted in “irreconcilable theories and empirical results” (tar-
get article, sect. 1, para. 5). The kind of incommensurability at
issue here is the inability to compare the same effect of interest
across separate experiments. Call this dimensional commensura-
bility. To address this, the design space’s core features include
(i) identification of plausibly relevant dimensions of the phenom-
enon of interest and (ii) assignment to each possible experiment a
coordinate based on the dimensions the experiment is designed to
investigate. Commensurability between experiments is thus sup-
posed to be “baked in,” since all experiments directed at answer-
ing a given question can be compared in the design space,
allowing for more nuanced theories that take into account varying
dimensions and contexts. Although we agree that widespread use
of a design space could help address such dimensional incom-
mensurability, namely, the many variables that make social and
behavioral theories particularly complex, our worry is that this
strategy does not yet alleviate another major source of incommen-
surability: Conceptual discontinuity between research projects.

Implicit in the process of assigning design space coordinates to
experiments is the assumption that each dimension will track the
same concept across experiments. If an experiment E1 investigates
some dimension d and another experiment E2 also claims to inves-
tigate d, then commensurability requires not only that d is identified

as a variable or effect of interest in both cases but also that d is con-
ceptually identical in both E1 and E2. In other words, merely using
equivalent terms to refer to the same purported dimension d does
not yet achieve conceptual identity. In seeking to assign the results
of E1 and E2 to the design space, what justifies their respective loca-
tions? Taking their variables of interest at face value will yield one
set of coordinate assignments. But if the concepts that underpin
these variables are not the same, then their subsequent relation in
the design space may be inaccurate or misleading. As has been high-
lighted elsewhere in the literature on experimentation in the social
and behavioral sciences (e.g., Scheel, Tiokhin, Isager, & Lakens,
2021), investigating human behavior requires well-defined concepts
to ensure that observations and measurements accurately and ade-
quately capture the phenomena of interest. This kind of incommen-
surability, call it conceptual incommensurability, affects both the
validity of any given experiment as well as the ability to effectively
compare two different experiments.

To use one of the target article’s examples, possible dimensions
of the design space for experiments on “group synergy” will
include individual-level traits such as “average skill,” “social per-
ceptiveness,” and “cognitive style,” as well as group-level variables
including “communications technology” and “incentive struc-
ture.” Mapping how these variables interact through a shared
design space would considerably improve understanding of
group synergy. But what the design space does not address is
the ambiguity within singular concepts that both guides the
research project (“group synergy”) and defines its relevant param-
eters (“average skill,” “social perceptiveness,” etc.). If it turned out
that a set of experiments, each purporting to test the effect of
social perceptiveness on group synergy, was differentially concep-
tualizing social perceptiveness, then it is not clear how the results
of these experiments could be commensurable. To put it simply,
can research group A be sure that research group B conceptualizes
“social perceptiveness” in the same way? Plotting a set of experi-
ments in a design space can obscure underlying conceptual discon-
tinuities. There is reason to believe that research conducted under
different guiding strategies might inherit conceptual discordance
from the outset, precluding the construction of a design space in
the first place (Lacey, 2005). Even prior to running experiments,
the process of designing a space of possible experiments assumes
that researchers will subsequently operate using those same con-
cepts. This may turn out to be true, but not by fiat. Thus the design
space, while addressing one aspect of the incommensurability prob-
lem (whether the stated effects of interest are the same) overlooks
another (whether the concepts are equivalent).

Our concern is that the conceptual identity of the variables deter-
mining the design space must be ensured, not merely taken for
granted. Without such conceptual identity, results are not guaran-
teed to be commensurable, and social and behavioral evidence
will not be reconciled across experiments. Disagreements in two
measurements cannot be resolved if the source of the discrepancy
is unclear. Is it a problem in the measurement methodology? Is it
a problem in the accuracy of the measurements themselves? Or is
the problem that the measurements are either not capturing the rel-
evant concept or not measuring the same concept across different
studies? Feest (2022), for instance, argues that experimental psychol-
ogists must address three distinct reactivity challenges – all related to
the ways psychological subject matter have dispositions to react to
experimental contexts – in designing their experiments;
Almaatouq et al.’s call for integrative experiment design across a
design space suggests another challenge to designing experiments
where genuine results can be distinguished from artifacts.
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Thus, our suggestion is that, for commensurability to obtain in the
design space as the authors advocate, researchers must first precisely
specify the operative concepts. Such specification is challenging, as it
involves what philosophers, historians, and scientists have called the
problem of coordination: Coordinating measurement of directly
observable entities with quantities of interest that can only be inferred
from the observable entities (Kellen, Davis-Stober, Dunn, & Kalish,
2021). Since there is good reason to think that the specification of
concepts used across the social and behavioral sciences does not
occur on a systematic basis (e.g., Bringmann, Elmer, & Eronen,
2022; Scheel et al., 2021), the use of concepts to generate the proposed
design space will inherit the same conceptual incommensurability.
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Abstract

Commentaries on the target article offer diverse perspectives on
integrative experiment design. Our responses engage three
themes: (1) Disputes of our characterization of the problem,
(2) skepticism toward our proposed solution, and (3) endorse-
ment of the solution, with accompanying discussions of its
implementation in existing work and its potential for other
domains. Collectively, the commentaries enhance our confi-
dence in the promise and viability of integrative experiment
design, while highlighting important considerations about how
it is used.

R1. Overview

We are grateful to our colleagues for the effort they devoted to
writing so many interesting and thoughtful commentaries, and
we appreciate the diverse viewpoints conveyed therein. Our com-
mentators not only raised a number of criticisms and concerns,
but also offered constructive suggestions for the theoretical foun-
dation of the integrative experiment design framework and the
challenges faced when implementing it in practice. Although not
everyone agrees with our characterization of the problem or with
the solution we describe, the overall response to the target article
reinforces our confidence that the problem we have identified is
important and that the integrative approach is promising and prac-
tical, while highlighting important considerations about its use.

Given the breadth and nuance of the commentaries, address-
ing every point raised is not possible. Therefore, we have instead
organized our response around three central themes that arose
repeatedly across the commentaries. The first theme addresses
those that challenge our characterization of the problem – specif-
ically, the premise that integrating diverse experimental findings
often proves inefficient or fails altogether due to the incommen-
surability inherent in the “one-at-a-time” experiment design. The
second theme comprises commentaries that more or less agree
with our problem identification but are skeptical of the proposed
solution, raising arguments against its theoretical possibility,
operational practicality, or effectiveness in addressing the prob-
lem. Notably, some commentaries in this category also offer
potential solutions to the issues raised. The final theme includes
responses that accept the proposed solution and also describe pro-
jects that embody the integrative approach or examine its poten-
tial application in other domains and fields of study.

R2. Is there even a problem?

We begin by examining the extent to which the commentaries
agree with our premise that the experimental social and behavio-
ral sciences are often not cumulative, and that existing mecha-
nisms for integrating disparate experimental findings do not
work. We attribute this failure to the problem of incommensura-
bility, where experiments are conducted in theoretical isolation
from other relevant experiments, exacerbated by the
one-at-a-time approach.

While the vast majority of commentaries expressed substantive
agreement with our claim and diagnosis of the root cause, a few
did not. Among those that disagreed, commentators’ positions
ranged from complete rejection of the target article’s central pre-
mise to the suggestion that our outlook is overly optimistic and
that there is, in fact, no hope for a cumulative tradition.
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R2.1. What problem?

Two commentaries argue that the integration-related issues high-
lighted in the target article are either unproblematic or do not
warrant a shift in practices.

Kellen, Cox, Donkin, Dunn, & Shiffrin (Kellen et al.) adopt
an assertive stance, disputing our critique of the one-at-a-time
approach on the basis that (1) it seems to be working in some
domains (e.g., human memory), where theory and one-at-a-time
experiments have accumulated to form a self-consistent and
empirically validated body of knowledge; and (2) inconsistent
results within a literature do not necessarily indicate a failure of
the one-at-a-time approach, as they may have alternative explana-
tions. For example, inconsistent results might arise from hidden
preconditions or moderators, or from studying different phenom-
ena not explainable by a common theory.

We acknowledge that an observed lack of integration across
several domains of interest does not imply that successful integra-
tion cannot occur in principle, or even that it has not occurred in
practice. We discussed this in the target article and offered exam-
ples of successful instances such as mechanism design applied to
auctions. As noted in the target article, the one-at-a-time
approach seems to work well in domains characterized by low
causal density, but other factors could influence its effectiveness,
such as experimenters’ knowledge about the range of relevant
parameter values, the plausible range of changes in the outcome,
and the nature of questions being asked – whether technological
(x can do y) or substantively theoretical (x is the mechanism that
generates phenomena of interest y). For more discussion on this
point, see the related discussion by Meehl (1990) on why signifi-
cance testing has worked sufficiently in agronomy, but not
psychology.

Kellen et al. point to working memory as “an exemplary case”
of a successful cumulative tradition, and indeed it is among the
clearest examples of a field being able to better link results across
one-at-a-time studies through reliance on shared experimental
paradigms (e.g., free recall, the Deese–Roediger–McDermott
(DRM) task, and change detection). But even this high-paradigm
field has struggled with problems of integration. Consider
Oberauer et al. (2018), a paper cited by Kellen et al. as evidence
of the field’s wealth of empirical findings, which begins with a
premise very much like our own: “Any mature field of research
in psychology – such as short-term/working memory – is charac-
terized by a wealth of empirical findings. It is currently unrealistic
to expect a theory to explain them all; theorists must satisfice
with explaining a subset of findings.” Oberauer et al.’s proposed
solution was the curation of benchmark datasets, whereas the
integrative approach might be reasonably thought of as the collec-
tion of benchmark datasets. A recent attempt to collect such
benchmark datasets in the context of working memory by
Huang (2023), which was explicitly inspired by the integrative
approach we propose, has made considerable progress toward
developing unified theories of working memory as a result
(Suchow, 2023).

In response to the second point, the inability of the one-at-a-
time approach to uncover preconditions and moderators and to
delineate between theoretically (and empirically) distinct regions
of the space is precisely the failure mode that Newell highlighted
in his article, with which we introduced our target article.
Therefore, what Kellen et al. see as alternative explanations to
the failings of the one-at-a-time approach are what we see as
downstream symptoms of the target article’s central premises. A

primary goal of the proposed integrative approach is to address
these specific issues.

Baron contends that the one-at-a-time paradigm is concerned
with demonstrating the existence of effects and causal chains, not
their generality. However, if one accepts the notion that many of
the social and behavioral phenomena are causally dense (“crud
factor” by Meehl or “no true zeros” by Gelman), then it follows
that almost every plausible hypothesized effect (i.e., X→ Y rela-
tionship) exists to at least some degree, under some conditions,
some of the time. If this is the case, then focusing on a single
hypothesis and demonstrating its existence to at least some
degree, under some (often unarticulated) conditions, some of
the time, demonstrates nothing beyond what we already had
good reason to believe. This line of reasoning is often used to crit-
icize null hypothesis testing for theory evaluation: Anything that
plausibly could have an effect will not have an effect that is exactly
zero because of the high-causal density of our subject matter
(Gelman, 2011; Meehl, 1967). In contrast, our argument in the
target article is that experimental design should address two key
questions: (a) how do the many plausible hypothesized effects
contribute to the outcome of interest, both individually and in
combination with other plausible hypothesized effects; and (b)
how does this contribution vary depending on relevant contextual
variables? This line of inquiry forms the core of the integrative
approach to experiment design.

R2.2 The solution is already here!

Holleman, Dhami, Hooge, & Hessels (Holleman et al.) contest
the lack of a realistic alternative to the one-at-a-time approach
that could facilitate the integration of experimental findings.
They point to “representative design,” a method introduced by
Egon Brunswik about 70 years ago – nearly two decades before
Newell’s critique of the one-at-a-time approach. Representative
design involves generating a sample of stimuli, either directly
extracted from the environment or designed to retain its charac-
teristics, to be representative of the population of environments to
which the experimenter wishes to generalize. The integrative
approach is indeed inspired by and builds upon Brunswik’s
representative design, which we cite in the target article. We iden-
tify at least two connections with his work. First, a frequent crit-
icism of Brunswik’s representative design revolves around the
challenge of defining the universe of potential environments
and formally sampling situations from it. The integrative
approach directly addresses these challenges, as we discuss in
the definition of the design space and sampling strategies (sects.
3.1 and 3.2 in the target article; sect. R3.2). Second, Brunswik’s
philosophy emphasizes sampling conditions from the agent’s
“natural environment.” This ensures that the conditions chosen
for experimentation are representative of those to which the
agent has adapted and to which generalizations would be applica-
ble (this corresponds with the target article’s Fig. 2C; what we call
the region of ecological validity in the design space). While this
strategy is suitable for certain scientific goals, we describe in sec-
tion R3.2 other equally legitimate scientific pursuits that would
involve sampling conditions that are either infrequently encoun-
tered or do not currently exist in the real world. Finally, we
note that while representative design indeed bears some resem-
blance to the integrative approach, the former has not been widely
adopted in the ensuing 70 years; thus, the need for an operational
solution remains unmet.

66 Response/Almaatouq et al.: Beyond playing 20 questions with nature

https://doi.org/10.1017/S0140525X22002874 Published online by Cambridge University Press

https://doi.org/10.1017/S0140525X22002874


R2.3. There is no hope

Mandel objects that many phenomena in social and behavioral
sciences may exhibit such extreme causal density as to defeat
any attempts to generalize; hence, the target article understates
the severity of the problem. We discussed exactly this possibility,
noting that when one “point” in the (latent) space fails to provide
information about any other point (including, as Mandel posits,
the same point over time; similar issues were raised by Olsson
& Galesic), any kind of generalization is unwarranted due to
extreme sensitivity with respect to contextual factors (including
time). As we noted in the target article, such an outcome would
be disappointing to many, as it would essentially vitiate the poten-
tial for generalizable theory in that domain; however, it would not
invalidate the integrative approach. On the contrary, it demon-
strates its potential to reveal fundamental limits to prediction
and explanation (Hofman, Sharma, & Watts, 2017; Martin,
Hofman, Sharma, Anderson, & Watts, 2016; Watts et al., 2018).
If true, it is surely preferable to characterize such limits than to
indulge in wishful thinking and social science fiction. Moreover,
applied research might still have merit, potentially by centering
on the exact point (time, context, population) of interest
(Manzi, 2012). This could yield reproducible social technologies
even if not broad-based scientific theories. As we also note, how-
ever, such unforgiving cases are not a foregone conclusion.
Rather, the extent to which they arise is itself an empirical ques-
tion that the integrative approach is positioned to address. By
conducting a sufficient number of integrative experiments across
various domains, the approach could potentially lead to a “meta-
metatheory” that clarifies under which conditions we can or can-
not expect to identify generalizable findings.

R3. Is the integrative approach viable?

Most commentaries broadly agreed with the target article’s fram-
ing of the problem and focused their discussion on the viability of
the integrative approach as a potential solution. The target article
describes the integrative experiment design approach as involving
three key steps: (1) Explicit definition of an n-dimensional design
space representing the universe of relevant experiments for a phe-
nomenon; (2) judiciously sampling from this design space in
alignment with specific goals; and (3) integrating and synthesizing
the results through the development of theories that must address
the heterogeneity (or invariance) of outcomes across this space. In
this section, we review the commentaries related to each of these
steps and then address broader concerns about the potential
impact of the integrative approach on who participates in science.

R3.1. The feasibility of constructing a design space

Several commentaries challenge the first step of the integrative
experimentation approach, arguing that constructing the “design
space” (or “research cartography”) is practically difficult, if not
theoretically impossible. Yet, some commentaries also offer possi-
ble solutions and suggestions.

Olsson & Galesic pose the important question: Where do the
dimensions of the design space come from? They argue that draw-
ing from past studies might lead to a biased representation of the
true design space, influenced by implicit or explicit theories of the
original researchers, methodological constraints, or adherence to a
particular experimental paradigm. Clark, Isch, Connor, &
Tetlock (Clark et al.) add that researchers may overlook certain

dimensions that challenge their previous work, contradict their
favored theories, fall outside their expertise, or stem from the
list of “socially off-limits” – yet plausible – dimensions. Primbs,
Dudda, Andresen, Buchanan, Peetz, Silan, & Lakens (Primbs
et al.) note that excluding any factor from the design space could
lead to the dismissal of integrative experiments’ conclusions due
to a crucial missing moderator. Such discourse gives rise to the ques-
tion Shea & Woolley pose – “who decides what variables are
included or receive more attention?” – and shares Tsvetkova’s con-
cerns that this approach could worsen existing inequalities and hier-
archies within academia, which we discuss further in section R3.4.

Shifting focus from the source of the dimensions to the dimen-
sions themselves, Gollwitzer & Prager argue that these dimen-
sions are often theoretical constructs, and the various ways of
conceptualizing and operationalizing them may potentially lead
to very large (if not infinite) design spaces. Vaynberg,
Hoffman, Wallis, & Weisberg underscore the problems posed
by a lack of precise operative concepts in the social and behavioral
sciences, which could lead different researchers to conceptualize
the same dimension differently, thereby creating “conceptual
incommensurability” across experiments that ostensibly deal
with the same theoretical construct. Higgins, Gillett,
Deschrijver, & Ross add yet another layer of complexity by point-
ing out that even with the same conceptualization of a dimension,
researchers might employ different instruments for measurement,
leading to “measurement incommensurability” across experi-
ments. They also discuss the implications of the validity and reli-
ability issues of these measurement tools on the integrative
approach. Finally, Dubova, Sloman, Andrew, Nassar, &
Musslick, as well as Necip Tunç & Tunç, voice concerns that
committing to any predetermined list of dimensions could be pre-
maturely restrictive, potentially stifling the exploration of new
dimensions beyond that list.

In addition to raising concerns, our commentators also offer
some solutions. Clark et al., as well as Amerio, Coucke, &
Cleeremans, propose adversarial collaborations, wherein teams
would include scholars who have previously published from mul-
tiple competing theoretical perspectives, possibly incorporating
academics who study similar phenomena from various, even
numerous, formerly competing standpoints. Requiring research-
ers to collaborate with theoretical adversaries would increase the
likelihood of the research design space incorporating relevant
dimensions. Rather than a winner-takes-all competition between
seemingly contradictory hypotheses, this model would encourage
exploration for genuine metatheories that clarify contexts in
which different claims hold, resolving apparent discrepancies
between leading scholars’ favored theories. Primbs et al. propose
consensus meetings, wherein researchers convene to discuss and
commit a priori to the list of dimensions, their operationalization,
and the validity and reliability of chosen instruments. Such a con-
sensus would also cover the implications that the results of inte-
grative experiments have for their hypotheses, making it more
challenging to dismiss the conclusions drawn from these experi-
ments. Complementing adversarial collaborations and consensus
meetings, Katiyar, Bonnefon, Mehr, & Singh suggest a high-
throughput natural description approach to tackle the “unknown
unknowns” in a specific design space. This approach involves sys-
tematically collecting and annotating large, representative corpora
of real-world stimuli, leveraging mass collaboration, automation,
citizen science, and gamification.

We are sympathetic to the concerns raised and appreciative of
the constructive suggestions. As we acknowledge in the target
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article, building the design space is not a solved problem, nor is it
a single problem with a singular solution. In practice, the specific
methods are yet to be worked out in detail and are likely to vary
from one application to another, but adversarial collaborations,
consensus meetings, and high-throughput approaches all seem
like promising candidates. Fortunately, as we pointed out in the
target article, the integrative approach does not require a design
space with fixed, predetermined dimensions. On the contrary,
the design space’s dimensionality should remain fluid. For exam-
ple, it can expand when identical points in the design space pro-
duce systematically varying results, indicating a need to actively
search for an additional dimension to account for these differ-
ences. Alternatively, the design space can contract when experi-
ments with systematic variations within the design space yield
similar outcomes, suggesting that the dimensions in which they
differ are irrelevant to the phenomenon of interest and therefore
should be collapsed or omitted. In this way, concerns about mis-
specification, while reasonable, are not problematic for the inte-
grative approach on their own. As we note in the target article,
“the only critical requirement for constructing the design space
is to do it explicitly and systematically by identifying potentially
relevant dimensions (either from the literature or from experi-
ence, including any known experiments that have already been
performed) and by assigning coordinates to individual experi-
ments along all identified dimensions.” Beyond that, we are
agnostic about the specifics and look forward to seeing how
best practices evolve through experience.

We also note that the issues raised in most of these commen-
taries also apply to the traditional one-at-a-time approach.
Employing an integrative approach does not change, for example,
the imprecision inherent in the field nor does it make variation
across a behavioral dimension any more infinite than it already is.
Thus, while we agree that additional advances are needed and care
should be taken in how we design and execute our experiments,
we do not see the current state of affairs as a weakness of the inte-
grative approach so much as a weakness of all empirical work.

R3.2. The challenge of effective sampling

As mentioned in the target article, efficient and effective sampling
of the design space is a practical necessity given the limited
resources available for conducting experiments. Vandekerckhove
highlights an often-overlooked advantage of sampling from design
spaces: Statistical efficiency. Efficiency can be achieved by increas-
ing the number of sampled experimental conditions while decreas-
ing the number of trials per experiment, thereby maximizing
estimation accuracy, when the effect is heterogeneous (DeKay,
Rubinchik, Li, & De Boeck, 2022).

The target article outlined different strategies and emphasized
that the choice of the best strategy is goal-dependent. Holleman
et al. and Tsvetkova note that some sampling strategies could
select context and population combinations – or “environments”
in Brunswik’s terminology – that are not found or are impossible
in reality, hence lacking ecological validity. They propose sam-
pling following Brunswikian principles of representative design.
Indeed, we agree that if the goal of research is to generalize results
to the situations where the participant population functions, we
can ensure ecological validity by selecting experimental condi-
tions representative of those situations. It is worth noting, how-
ever, that what is considered ecologically valid or relevant can
vary across populations, places, and periods, and thus representa-
tion of the “natural environment” can change. For instance,

Salganik, Dodds, and Watts’ (2006) experimental music market
may be more representative of today’s environment, with the
ubiquity of online audio streaming services like Spotify and
SoundCloud, than when the study was initially conducted.
Thus, there is merit in sampling beyond what is considered rep-
resentative of a specific population, place, time, or situation.
Conditions change and can be changed; conditions that might
not currently exist in the “natural environment” can still be the
foundation for valuable technological and platform designs; for
example, those that modify the “natural environment” of a digital
social network platform to elicit desired behaviors from users.

Gollwitzer & Prager argue against random sampling from the
design space, calling for strategies that acknowledge a hierarchy in
the potential experiments’ informativeness and discriminability.
They propose prioritizing experiments that, either logically or the-
oretically, hold more importance over more peripheral ones.
While incorporating such knowledge in the sampling strategy is
compatible with the target article’s proposed approach, we refer
to Dubova, Moskvichev, and Zollman’s (2022) and Musslick
et al.’s (2023) work, which examined the epistemic success of
theory-driven experimentation strategies such as verification, fal-
sification, novelty, and crucial experimentation, finding that if the
objective is to uncover the underlying truth, random sampling
proves to be a very robust strategy. We also note that adversarial
collaborations and consensus meetings, proposed above, offer
potentially useful mechanisms for aligning the sampling strategy
with the research goal.

R3.3. Contemplating the nature of “theory”

In the target article, we posit that, much like the traditional
one-at-a-time paradigm, the goal of integrative experiment design
is to cultivate “a reliable, cohesive, and cumulative theoretical
understanding.”

Several commentaries contest this claim about the integrative
approach, suggesting it may be blindly empirical or even antithe-
oretical. In particular, many commentaries expressed discomfort
at the suggestion that fitting a machine-learning model (such as
a surrogate model within the “active learning” process) can gen-
erate or contribute to theory. However, as indicated by Devezer
and reflected in those commentaries, there is no consensus on
what a theory is or how to differentiate a good theory from a
bad one. For instance, Gal, Sternthal, & Calder insist that theory
should be expressed in terms of theoretical constructs, not vari-
ables. Devezer, as well as Hoffman, Quillien, & Burum
(Hoffman et al.) and Smaldino demand theories to be mechanis-
tic, identifying the underlying causal processes. Hoffman et al.
stipulate that these mechanisms should be “well-grounded,”
meaning they can be explained in terms of well-understood
processes. Hullman call for better a definition of what makes a
theory interpretable. Smaldino argues that individual theories
should align with a broader collection of related theories and
share a set of common core assumptions, while Baron advocates
for theories with broad scope, reflecting diverse, often ostensibly
unrelated phenomena. Vandekerckhove, Smaldino, and Olsson
& Galesic call for more computational models and quantitative
theories. Vandekerckhove adds that ideally, these would take the
form of likelihood functions – functions that describe the proba-
bility of data patterns under a theory – over the method space,
while Kummerfeld & Andrews argue for using causal-discovery
artificial intelligence (AI) to generate multivariate structural
causal models.
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We empathize with these perspectives on the essential features
of a theory. We acknowledge that theories can originate from var-
ious sources, including historical records, ethnographic observa-
tions, everyday anecdotal experiences, data mining, fitting a
black box machine-learning model, constructing analytically trac-
table mathematical models, or simply thinking hard about why
people behave as they do. Nevertheless, a theory’s truth is not
guaranteed by satisfying any or all of these features, or by the
method of its generation. It is also not clear why any specific fea-
ture or process of theorizing should always take precedence over
others. Indeed, when pressed, researchers who advocate these fea-
tures for theories will likely assert a connection between the pres-
ence of their preferred features and the “success” of the theory in
explaining existing observations and predicting unseen data.
Hence, we view the following as the most inclusive criteria for
what we expect from theories: They should (a) accurately explain
observed experiment results and (b) make accurate predictions
about unseen experiments. To be clear, we do not object to theo-
ries incorporating any other features. However, we argue that a
theory’s primary evaluation criterion should be its accuracy in
predicting unseen experimental outcomes, including out-of-
distribution and underintervention scenarios.

More broadly, the commentaries have caused us to reflect
more deeply on our use of the word “understanding” when
describing the ultimate goal of integrative experimentation. A bet-
ter word would have been “explanation,” which we view as having
two subgoals: (1) Providing an accurate representation of how the
world works (emphasizing causality, generalizability, prediction,
etc.), and (2) resonating with a human interpreter by evoking a
sensation of understanding (emphasizing interpretability and
sense making). We sense from some of the commentaries that
these two goals are often conflated: Accurate theories are also
the ones that make sense to a human interpreter. However, in
our view these objectives are distinct in theory and often conflict
in practice. This conflict stems from the high-causal density of
phenomena under study, leading us to a situation where accurate
theories (with robust out-of-distribution performance) may not
satisfy our intuitive understanding due to their complexity – the
number of factors and scale of their interactions. Conversely,
understandable explanations are often incorrect, as simple theo-
ries cannot capture the complexity of the phenomenon. Perhaps
what our commentators find objectionable about our approach
is its preferencing of accuracy over sense making. In other
words, the integrative approach is about theory, but it presents
a version of theory that places second what many consider
theory’s primary purpose: Generating a subjective sense of
understanding.

Looking ahead, we might have to embrace an era of machine-
generated or machine-aided social scientific theories, especially if
we prioritize accuracy over sense making in domains of high-
causal density, a line of thinking we will explore further in future
publications.

R3.4. Diversity and power dynamics

Shea & Woolley, as well as Tsvetkova, raised concerns that the
integrative approach might centralize power among a small num-
ber of elite researchers and well-funded institutions, exacerbating
existing inequalities in research. Shea & Woolley criticize our use
of high-energy physics as an exemplar of successful large-group
collaborations, noting that that fields requiring significant infra-
structure investment tend to be more hierarchical and face

significant issues such as sexual harassment and gender-
participation gaps.

In response to these concerns, we provide two clarifications.
First, while we agree that diversity, equity, and inclusivity must
be first-order considerations in any scientific reform, we see them
as distinct issues from the intellectual merits of the argument for
an integrative approach. Second, there are several mechanisms to
ensure that a diversity of perspectives is heard. In the target article
(see sects. 5.7 and 5.9) we highlighted the ways in which the inte-
grative approach could allow a broader range of contributors to be
involved in the process of designing, conducting, and analyzing
experiments. The suggestions raised in the commentaries – such
as adversarial collaborations and consensus meetings (see sect.
R3.1) – provide further opportunities for participation.

In general, the responsibility of facilitating wide-ranging contri-
butions to science is a burden shared by the entire scientific commu-
nity. The integrative approach offers a distinctive set of opportunities
and challenges in our collective pursuit of this goal: It not only
expands the ways in which researchers can contribute to and benefit
from research, but also potentially introduces new social dynamics
we have to navigate to ensure this potential is achieved.

R4. Does the integrative approach have reach?

This last theme considers commentaries that endorse our proposed
solution and illustrate projects that embody the integrative approach
or explore its potential extensions to other areas and domains.

Cyrus-Lai, Tierney, & Uhlmann describe a recent crowd-
sourced initiative that brings together several designs, analyses,
theories, and data collection teams. This project further demon-
strates the limitations of the one-at-a-time approach and champi-
ons the need to evaluate “many theories in many ways.”
Tsvetkova suggests that the integrative approach’s initial step –
“research cartography” – can consolidate knowledge and invigo-
rate new research, retrospectively, beyond the prospective goals
of integrative experiments. She envisions a Wikidata-style data-
base that would contain all social and behavioral knowledge
from experiments, enabling the identification of research gaps,
established findings, and contentious issues. Li & Hartshorne
highlight the theoretical advancements nestled between the tradi-
tional one-at-a-time approach and the “ideal” version of the inte-
grative approach. They highlight the potential for studies that
employ large and diverse sets of stimuli, encompass a broad
demographic range of subjects, or engage a variety of related
tasks – even without systematic exploration. Meanwhile,
Simonton highlights the value of infusing the integrative
approach with correlational methods.

Glasauer, along with Ghai & Banerjee, make a strong case for
expanding the integrative approach to within-subject designs.
They stress its statistical efficiency and the significance of individ-
ual differences. Additionally, Haartsen, Gui, & Jones (Haartsen
et al.) propose a method that combines Bayesian optimization
with within-subject designs to further increase the efficiency of
data collection.

Lastly,Haartsen et al. highlight the potential value of the integra-
tive approach in domains such as psychiatry and cognitive develop-
ment. Titone, Hernández-Rivera, Iniesta, Beatty-Martínez, &
Gullifer extend this approach to evaluate the implications of bilin-
gualism on the mind and brain. They point to ongoing work consis-
tent with the integrative approach, drawing connections between
the systems framework of bilingualism and research cartography.
Dohrn & Mezzadri extrapolate the integrative approach to thought
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experiments. While these commentaries are clear and persuasive,
our lack of expertise in these domains prevents us from contributing
further substance to these discussions. The message from these com-
mentaries is that issues stemming from the incommensurability
characteristic of the “one-at-a-time” experiment design extend
beyond the social and behavioral sciences and that the integrative
approach may be fruitful in these domains and others beyond them.

Overall, these discussions and proposals sketch a vibrant pic-
ture of the various ways the integrative approach can be applied
and expanded across different contexts. They reinforce the value
and potential of this methodology, offering much to consider
and incorporate into our own research.

In closing, we express our deep appreciation to all the commen-
tators for their thoughtful insights and stimulating discussion. We
are eager to continue engaging with the research community,
incorporating these valuable suggestions into our work, and collec-
tively advancing the field of social and behavioral science research.
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