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To recognize an object, it is widely supposed that we first detect
and then combine its features. Familiar objects are recognized
effortlessly, but unfamiliar objects—like new faces or foreign-
language letters—are hard to distinguish and must be learned
through practice. Here, we describe a method that separates detec-
tion and combination and reveals how each improves as the observer
learns. We dissociate the steps by two independent manipulations:
For each step, we do or do not provide a bionic crutch that performs
it optimally. Thus, the two steps may be performed solely by the
human, solely by the crutches, or cooperatively, when the human
takes one step and a crutch takes the other. The crutches reveal
a double dissociation between detecting and combining. Relative
to the two-step ideal, the human observer’s overall efficiency for
unconstrained identification equals the product of the efficiencies
with which the human performs the steps separately. The two-
step strategy is inefficient: Constraining the ideal to take two steps
roughly halves its identification efficiency. In contrast, we find that
humans constrained to take two steps perform just as well as when
unconstrained, which suggests that they normally take two steps.
Measuring threshold contrast (the faintness of a barely identifiable
letter) as it improves with practice, we find that detection is in-
efficient and learned slowly. Combining is learned at a rate that is
4× higher and, after 1,000 trials, 7× more efficient. This difference
explains much of the diversity of rates reported in perceptual learning
studies, including effects of complexity and familiarity.

object recognition | sensitivity | letter identification

The world is full of objects, and we spend our lives identifying
them. Reading an hour a day for a year means identifying

millions of letters and words. Each letter is a good basic-level
object: simple, common, useful, and with its own name and shape
(1–4). Identifying a letter requires two steps of visual processing:
the observer first detects the letter’s features and then combines
them to recognize the letter (5).
However, what is a feature? Interpretation of learning studies

that use traditional letters and other everyday objects is hindered
by the infinite number of possible features, which include phys-
ical properties, like size and shape, as well as abstract properties,
like function and beauty (6–8). To avoid this morass, we narrowly
define features as discrete components of an image that are
detected independently of each other (5).
When letters share features (perhaps, the vertical bar in a D

and an L), detecting one feature is not always enough to tell
which letter it is, so multiple features must be detected and
combined for reliable identification. Both steps—detection and
combination—are liable to errors that impede identification. For
example, if a letter is faint or seen in dim light, a reader may in-
correctly identify it because she fails to detect a feature that is
present or because she spuriously “detects” a feature that is ab-
sent. Identifying an unfamiliar letter can be difficult even when all
of its features have been correctly detected. For example, a novice
reader may mistakenly identify a plainly visible letter, confusing
the shape of one for that of another.
Whether struggling to detect or to combine, with more practice,

observers fail less. They learn. Feature detection and combination
can both be learned through practice (9–11).

To study features, it is helpful to use Gabors. A Gabor is
a grating patch that is made by vignetting a sinusoidal grating
with a Gaussian window, which restricts its spatial extent to a few
bars . Gabors are fairly well matched to the receptive fields of
simple cells in the primary visual cortex measured physiologically,
and to the tuning of spatial frequency channels measured psy-
chophysically. Gabors can differ in position, orientation, and
spatial frequency. If Gabors are sufficiently different along these
dimensions, they are detected independently and can be distin-
guished by a single feature detection (12, 13). Practice improves
detection of a Gabor (14). This learning is specific to the trained
stimulus and location (15, 16).
Tasks requiring feature combination also improve with prac-

tice. Merely detecting the presence of an object does not require
combining its features, but identifying it usually does; this is
because detecting any feature reveals the object’s presence, but,
depending on the other possible objects, usually several features
are needed to specify which object is present. Fine and Jacobs
(17) measured improvement with practice in identifying com-
pound gratings, which are multifeature objects composed of several
superimposed Gabors, and found that learning transferred across
orientations, unlike learning in detection tasks. Likewise, Kovács
et al. (18) measured improvement of search for orientation-defined
contours and found that learning transferred between eyes and
to other orientation-defined contours, again unlike learning in
detection tasks.
There are hints that the two steps, detection and combination,

may be learned at different rates. Learning of familiar letters is
slow and has been attributed to improved feature detection (19).
Unlike the slow learning of familiar letters, the learning of new
letters is initially fast, but slows as the letters become familiar (5,
20–22). This learning might involve improvement at either step.
Identification involves both detecting and combining of features,
so, when identification performance improves, one would like to
know how much of this learning is due to improved detection
rather than improved combination of features.
Here, through the use of six variously enhanced observers per-

forming the same letter-identification task, we dissociate detecting
and combining, revealing each step’s contribution to learning. Of
the six kinds of observer, two are “unconstrained” and four are
“composite.” Unconstrained is the traditional situation of pre-
senting a faint target and asking the observer to identify it, with
no constraints. We test both the human (H) and the ideal (I)
observer in this way. The ideal is an algorithm that chooses the
most probable hypothesis, maximizing expected accuracy. Com-
posite observers are new. Of the four composite observers, two
are bionic. They are human in only one of the steps. The other
step is delegated to a bionic crutch, either the ideal detector or
the ideal combiner. In these two cases, the two perform as a team:
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Either the human combines what the ideal detects (composite
IH), or the ideal combines what the human detects (composite
HI). Having broken up the task into two parts, we can also assign
both parts, in distinct sessions, to the same observer, so that the
human (composite HH) or the ideal (composite II) takes both
steps. The bionic crutches test for double dissociation: Is the
human identification process actually separable into two distinct
steps of detection and identification?
Are the bionic crutches overkill? Is it not enough, for our

purpose, just to note the different learning rates for tasks that do
and do not require combining? No. That comparison is sugges-
tive, but has not led to any published conclusions about distinct
learning rates in separate stages. Each task yields a rate, but no
one has managed to link the task and the model strongly enough
to draw conclusions that distinguish the two kinds of learning in
one model. Adding to the confusion, much of the perceptual
learning results are for fine discrimination of one feature, like
orientation, which may require combining the activity of several
feature detectors, but has usually been taken to reflect learning
at an early stage. Our bionic crutches provide a double-dissoci-
ation paradigm that rises above these vagaries, showing how the
observed pattern of results is diagnostic evidence for independent
processes. Our paradigm requires manipulations (the bionic
crutches) that selectively affect the two presumed processes. The
strong conclusion is well worth the bother.
To separate the steps, we need to know the letters’ features; they

are uncertain for traditional letters, so we use Gabor letters in-
stead (Fig. 1). Based on the probability summation literature, we
suppose that our Gabors are features, detected independently (12,
13). The juxtaposition of n Gabors creates an n-feature “letter”
(23, 24). Incidentally, though Gabors are very well-suited to be the
elements of our stimuli, they are not essential; simple bars might
do as well. By using Gabor (or bar) letters, we can precisely specify
the features that constitute each letter, while maintaining the es-
sence of an alphabet: a set of many distinguishable objects sharing
a common visual style. Our Gabor letters are similar to Braille
letters in that they each consist of a binary array of features. Braille
behaves well when presented visually (5, 25). Even so, the con-
clusions of this paper do not depend on our claim that Gabor
“letters” are letters; it is enough that they are objects.
We created the IndyEighteen alphabet. In general, an IndyN

alphabet is the set of all possible combinations of N features.
Suppose we are asked to identify a randomly selected letter from

this alphabet of 2N letters. Because the presence of each feature
is statistically independent of the rest, all N features must be
detected to identify the letter reliably. In most traditional alpha-
bets, however, a letter can be identified without detecting all of
its features.* To better match this property of traditional alpha-
bets, we created several eight-letter subsets drawn randomly from
IndyEighteen. One such subset appears in Fig. 1. Reducing the
number of possible letters makes identification easier. In general,
in a subset of Indy, the features are no longer independent or
equally frequent, so fewer feature detections are needed for
identification, and some features are less informative than oth-
ers. At the extremes, a feature may be unique to a letter and thus
diagnostic of its identity, or common to all of the letters and
thus irrelevant to the task of distinguishing among them (26).†
For each unconstrained or composite observer, we create a new

alphabet consisting of eight IndyEighteen letters. On each trial,
we ask the observer to identify a letter drawn from that eight-
letter alphabet. We measure threshold contrast, the lowest con-
trast (faintness) sufficient to identify the letters correctly 75% of
the time. We then convert threshold contrast to efficiency. Effi-
ciency is a useful way to characterize performance of a computa-
tional task (27, 28); this pits the actual observer against the ideal
observer, an algorithm that performs the whole task optimally,
not constrained to taking two steps. Efficiency is defined as the
fraction of the signal energy used by an observer that is required
by the ideal to perform just as well. Contrast energy is pro-
portional to the contrast squared, so the efficiency of the actual
observer is

η =
c2I
c2
; [1]

where c and cI are threshold contrasts of the actual and ideal
observers.

Results
Dissociating Detecting from Combining. Fig. 2 shows learning for
two participants, plotting threshold contrast as a function of the
number of completed identification trials. (Results for all six
participants appear in Fig. S1.) The right-hand vertical scale
shows the efficiency corresponding to each threshold contrast.
There are two graphs (Fig. 2, Left and Right), one per partici-
pant. Within each graph appear all results for that participant,
unconstrained and composite. The top line (Fig. 2, solid black
line) is the unconstrained ideal (I), the baseline for calculating
efficiency. The bottom solid line is the unconstrained human.
The other four lines, sandwiched in between, are for composites.
Solid lines are fits to data, and the dashed line is a prediction
derived from the other lines (Eq. 3). The vertical positions of the
lines show that threshold contrast (and efficiency) are best for the
unconstrained ideal, slightly worse for the two bionic crutches
working together, and get worse, from line to line, as we ask the
human to do part or all of the work (Fig. 2, bottom solid line). At
trial 1,000, the composite-observer efficiency with the human do-
ing just the combining (IH, 15%) is 7× that with the human doing
just the detecting (HI, 2.1%). The lines in which the human does

Fig. 1. Eight Gabor letters. The letters of the IndyEighteen alphabet are
composed of Gabors. Each of the 18 possible Gabors is oriented ±45° from
vertical and is at one of nine locations in a 3 × 3 grid. When a right-tilted and
a left-tilted Gabor coincide, they form a plaid, but vision still responds to
them independently. We suppose that the Gabors are detected independently,
so that each Gabor is a feature. With two orientations and nine locations, there
are 18 possible Gabors, i.e., features. The eight letters displayed here are a
randomly selected subset of the 218 letters in the whole alphabet. Note that
within this subset, some features are common to many letters (e.g., six of the
eight letters contain a right-tilted Gabor at the top right corner), whereas some
features are common to just a few (e.g., two of the eight letters contain
a right-tilted Gabor at the bottom left position).

*Pelli et al. (5) found that human observers need 7 ± 2 feature detections for threshold
letter identification for all traditional alphabets tested, over a 10-fold range of complex-
ity. Assuming that feature count is proportional to complexity, as proposed in ref. 5,
then, even if the least-complex alphabet tested had only seven features per letter, the
most complex had 70 features per letter. Thus the seven features detected at the thresh-
old for identification of a complex letter are only a small fraction of the letter’s features.

†Using a Monte Carlo simulation, we determined that 4–14 feature detections are required
to achieve criterion performance of 75% correct for identifying a letter from a set of eight
randomly selected IndyEighteen letters, depending on the false alarm rate. A false alarm
occurs when an absent feature is “detected.” Sometimes, by chance, enough features are
falsely detected such that the letter appears more similar to one of the foils than to the
target. Additional feature detections, hits, are needed to compensate. We considered false
alarm rates between 0% and 51%. At false alarm rates greater than 51%, it is impossible
for the observer to achieve criterion performance, even with a hit rate of 100%.
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the combining (H, HH, and IH) are steep, showing fast learning,
and the rest (I, II, HI) are shallow. The log-log slope of pure
combination learning (IH, −0.11 ± 0.01; Fig. 2, green triangles)
is 4× that for pure detection learning (HI, −0.03 ± 0.01, blue
squares). The reported slopes and efficiencies are averages
across all participants. (As a control, four of the participants
used a modified version of the bionic crutch with independent
detection trials, as described in Supporting Materials and Methods,
Composite HI′.)
Does the unconstrained human really take two steps, first

detecting and then combining? That is an inefficient way to identify.
Constraining the ideal to take two steps roughly halves its efficiency,
ηII ∼ 0.5ηI, resulting in the gap between the upper two lines in
Fig. 2. However, constraining humans to take two steps leaves
their efficiency unchanged, ηHH ∼ ηH. This is the coincidence of
the dashed and solid lines at the bottom of Fig. 2, which do not
differ significantly from each other in slope or intercept across
participants (paired t test, P = 0.15 and P = 0.92, respectively).
Forcing people to take two steps does not impair their perfor-
mance, which suggests that taking two steps may be an intrinsic
limitation of human object recognition.
Do the bionic crutches really isolate the contributions to human

performance of two distinct processes? More precisely, does each
crutch boost efficiency by a multiplicative factor (Eq. 2)? In short,
are the steps separable? That conjecture is tested and verified
by the agreement of the two-step and unconstrained human per-
formance (H and HH, dashed and solid lines at the bottom of Fig.
2). Thus, we have dissociated the contribution of each step (29); in

the language of dissociation studies, this is a within-task process
decomposition with a multiplicative composite measure: effi-
ciency. The task is letter identification; the provision of each bionic
crutch—detector or combiner—is an independent manipulation.
Finding this double dissociation of detecting and combining shows
that object recognition “is accomplished by a complex process that
contains two functionally distinct and separately modifiable parts”
(ref. 29, p. 180).
The bionic crutch paradigm can be applied to any observer,

biological or not. However, the results are particularly easy to
interpret when a double dissociation is revealed, as we found for
the humans, but not for the ideal: the human observer’s internal
computation really is separable into detection and combination
steps, with the overall efficiency equal to the product of the ef-
ficiencies of the steps (Eq. 3).
Efficiency for identifying a letter or a word is inversely pro-

portional to complexity or word length (3, 5). Wondering why, it
has seemed obvious that the low overall human efficiency for
identifying a word (e.g., 1% for a short word) is mostly due to the
two-step strategy that detects the parts independently before
combining for identification. Supposing that vision is mediated by
feature detection seems to imply that each feature must reach
threshold by itself, and this applies equally to the letters in a word
and the features in a letter. Thus, it once seemed to us that
humans are inefficient mostly because of the inefficiency of taking
two steps. With this background, perhaps the reader will share
our surprise in discovering, through Monte Carlo trials, that the
ideal two-step strategy has a respectable efficiency of at least 65%
for any number of parts. We are astounded that the cost of re-
ducing each feature’s sensory information to a bit has such
a modest effect on overall efficiency. Thus, the mere fact of taking
two steps does not doom the combining efficiency to fall inversely
with complexity, as the human’s does. Perhaps the human drop in
combining efficiency is due to a limit in the number of features
that the observer combines, say 7 ± 2, as indicated by the ratio of
thresholds for identification and detection (5).‡

Comparing Slopes to Explain Effects of Familiarity and Complexity
on Learning. The shallow slope of detection learning, over 1,000
trials, matches that of other detection-learning studies, which
show slow learning over many sessions. Twelve slopes of learning
curves, from this study and seven other published papers, are
displayed in Table 1 and Fig. 3 (5, 13, 16, 21, 30–32). We limit
our survey to studies that report threshold contrasts for tasks that
demand discrimination of objects and patterns presented in
central vision, at fixation.
Our result—the shallow slope of learning to detect and the

steep slope of learning to combine—can explain the effects of
stimulus complexity and familiarity on the rate of learning, where
complex objects (requiring discrimination along many perceptual
dimensions) are learned faster than (simple) Gabors, and where
unfamiliar objects are learned faster than familiar objects.
It seems that complex objects are learned more quickly than

Gabors because complex objects require combining. Comparing
across studies in the literature (Table 1), we find that learning to
identify stimuli that require combining, such as unfamiliar faces
(slope b = −0.40), bandpass-filtered noise textures (−0.26), 4 × 4
random-checkerboard patterns (−0.16), and compound gratings
(−0.21), is much quicker than learning to detect a Gabor (−0.03,
−0.06), which does not require combining.
However, combination learning soon saturates, as the letters

become familiar. Extrapolating the fitted line for human com-
bination (Fig. 2, IH) predicts that efficiency would reach 100%
(ideal combining) after 1 million trials. Typical readers read
a million letters every 2 wk, for years. With so much experience,

Fig. 2. Learning. The participant (DF, Left; CH, Right) detects and combines
features to identify a letter from an alphabet of eight different IndyEighteen
letters. Each unconstrained or composite observer trained at threshold con-
trast, receiving just enough contrast to achieve criterion performance (75%
correct). Each line shows an unconstrained or composite observer’s threshold
contrast c (using the contrast scale, Left) and efficiency η (using the efficiency
scale, Right). The bottom solid line is the unconstrained human (H), and the
top line is the unconstrained ideal (I). The dashed line is the composite human
(HH). Separability of the two steps predicts that the unconstrained and com-
posite observers will perform equally, which is approximately true for the
human H and HH (bottom two lines, solid and dashed) and is not true of the
ideal I II (top two lines). The horizontal scale counts identification trials. For
composite HI, the human performs 18 detection trials for each identification
trial. In both vertical scales, learning goes up: efficiency increases upward and
threshold contrast increases downward. Because efficiency is inversely pro-
portional to threshold contrast squared (Eq. 1), the log-log slope of efficiency
is −2× that of threshold contrast.

‡Vul E, Goodman ND, Grifths TL, Tenenbaum JB (2009) One and done? Optimal decisions
from very few samples. Proceedings of the 31st Annual Conference of the Cognitive
Science Society, eds Taatgen NA, van Rijn H (Cogn Sci Soc, Austin, TX), July 29, 2009,
pp 66–72.
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surely they have learned to combine as well as they can. Any
additional learning of these familiar letters likely occurs in the
detection step. This is presumably why the slope of learning fa-
miliar letters (−0.02) matches our measured slope of learning in
the detection step (−0.03). When both the task and stimuli are
familiar (e.g., identifying a familiar letter), the slope of learning
falls on one side of the dashed line, showing slow learning (Table
1 and Fig. 3). Slopes of learning unfamiliar tasks or stimuli fall on
the other side. Presumably the steep slope for unfamiliar stimuli
is the fast learning of combination, which saturates once the
stimuli are familiar, leaving only the slow learning of detection.

Number of Features and Extent of Each Feature. We find that after
1,000 trials with an eight-letter subset of Indy18, the 15% com-
bination efficiency (IH) is 7× the 2.1% detection efficiency (HI).
In two-stage identification, each feature is detected independently,
so we expect the detection efficiency to be independent of the
number of features. The Gabor that we used as a feature was
fairly extended. Detection efficiency could be raised by using
a less-extended Gabor, with fewer bars. Because HI and II effi-
ciencies are nearly independent of the number of features, and H
and HH efficiencies are inversely proportional to the number of
features, Eq. 3 implies that combination efficiency must be in-
versely proportional to the number of features, which could be
explored by testing Indy4 and Indy100, say. Thus, reducing the
number of features would increase combining efficiency without
affecting the detection efficiency. Reducing the Gabor extent
would increase the detection efficiency without affecting the
combining efficiency.

Beyond Gabor Letters. It may be possible to extend our approach
beyond Gabor letters to other stimuli, such as words, faces, and

scenes, whose features are unknown. If one assumes the separa-
bility found here, then it may be easy to factor out the efficiency
of detecting (Eq. 5). Alternatively, mild image transformations,
like scaling and translation, change the features but preserve
abstract properties of the feature combination, like shape, that
may determine the object’s identity. We noted at the outset that
the existing literature on perceptual learning in early and late
visual processes suggests that combination learning transfers
across mild transformations and detection learning does not. In
human observers, the steps are separable: Overall composite ef-
ficiency is the product of the composite efficiencies of the two
steps (Eq. 6). Thus, for identification of an object from an arbi-
trary set, measuring the partial transfer of learning across a mild
transformation like scaling or translation would distinguish the
contributions of both steps: feature detection and combination.

Table 1. Slope of detection and identification learning in various experiments reported here
and in seven other published papers

Stimuli Slope b Familiar Source

Gabor (detection) −0.03 Yes Human detects and ideal combines

Familiar letter −0.04 Yes Pelli et al. (5)

Gabor (detection) −0.06 Yes Furmanski et al. (14)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Gabor letter −0.11 No Ideal detects and human combines

Unfamiliar letters −0.11 No Suchow and Pelli (22)

4 × 4 random checkerboard −0.11 No Pelli et al. (5)

Gabor (fine discrimination) −0.12 No Lu and Dosher (30)

Gabor letter −0.16 No Human, unconstrained

Filtered noise texture −0.32 No Gold et al. (31)

Unfamiliar face −0.36 No Gold et al. (31)

Shape in filtered noise −0.48 No Michel and Jacobs (32)

Compound grating −0.78 No Fine and Jacobs (17)

Plotting threshold contrast as a function of the number of completed trials, we fit parameter b, the log-log
slope. The dashed line separates the familiar from the unfamiliar.

Fig. 3. Slope of learning. Histogram of the slopes of learning in Table 1, with
one symbol for each row of the table. The labeled symbols , , and rep-
resent our identification tasks. The horizontal position of each symbol is the log-
log slope b. The dashed vertical line corresponds to the dashed horizontal line in
Table 1. This histogram shows the dichotomy of fast learning of unfamiliar
objects and slow learning of familiar objects. We speculate that the fast learning
of unfamiliar objects is learning to combine (i.e., recognize the shapes), which
quickly saturates, such that, once those objects have become familiar, we are
reduced to learning slowly as we gradually learn to detect the features better.
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Materials and Methods
On each trial, we ask the unconstrained or composite observer to identify an
IndyEighteen letter in added white noise. The letter and noise are both
static, presented together for 200 ms. Testing of each unconstrained or
composite observer begins with a new eight-letter alphabet and is per-
formed in a single block of 25 runs, with 40 trials per run. Short (2-min)
breaks are taken between runs, as needed, and longer (30-min) breaks are
taken between blocks. The entire session was completed within 8 h in 1 d,
without sleep or naps. The order of the blocks (one per task) is randomized
for each observer to minimize any order effect in the group average.

Unconstrained H: Human Identifies. The human participant identifies, un-
constrained. On each trial, we present a letter at threshold contrast (Fig. 4) to
the human participant, who identifies the letter by selecting it from the
response screen (Fig. 1). This trial challenges the human to identify, pre-
sumably by detecting and combining.

Unconstrained I: Ideal Identifies. The ideal observer identifies, unconstrained.
The human participant plays no role. On each trial, we present a letter at
threshold contrast. The ideal identifies the letter by choosing the most likely
possibility; it compares the noisy stimulus to each letter on the response
screen at the contrast of the signal, and selects the most similar (minimum
rmsd; see appendix A of ref. 5). The ideal achieves the best possible expected
performance, and this is the baseline for calculating efficiency.

Composite HI: Two Steps (Human Detects, Ideal Combines). The human par-
ticipant detects and the bionic crutch (ideal combiner) combines. On each
identification trial, instead of being shown the whole letter in a single
presentation, the human performs 18 detection trials, one for each possible
feature. (The 18 detection trials count as one identification trial in the
horizontal axis of Fig. 2.) On each detection trial, the human participant
reports whether the feature is present by responding “present” or “absent.”
The 18 present-vs.-absent decisions are recorded as an 18-bit string (1 if
present; 0 if otherwise) that is passed to the bionic crutch (ideal combiner).
The ideal combiner makes its selection by comparing the string received to
the string for each letter on the response screen, selecting the most similar

(minimum Hamming distance) (33); this challenges the human participant to
detect, without challenging combination.

Composite IH: Two Steps (Ideal Detects, Human Combines). The bionic crutch
(ideal detector) detects and the human participant combines. On each
identification trial, the crutch performs 18 detection trials. On each detection
trial, the crutch selects themostprobablehypothesis (present or absent), given
the noisy stimulus and the frequency of that feature in the alphabet. Features
judgedby the crutch tobepresent are displayed at high contrast to thehuman
participant, who identifies the letter by selecting it from the response screen;
this challenges the human to combine, without challenging detection.

Composite II: Two Steps (Ideal Detects and Combines). The two bionic crutches
together perform the whole task, in cascade. The human participant plays
no role.

Composite HH: Two Steps (Human Detects and Combines). The human partic-
ipant takes the two steps in separate sessions, one for each step. This trial
challenges the human to detect in one session, and to combine in another
session. The level of performance achieved by this two-step composite ob-
server, HH, is computed from the measured performance of the other three
two-step composites: HI, IH, and II. For this calculation, we suppose that the
efficiency η of each two-step composite observer is the product of two fac-
tors, a and b, one for each step, and that each factor depends on whether
that step is performed by the human (H) or an ideal bionic crutch (I), but it is
independent of how the other step is performed:

ηHH = aHbH

ηHI = aHbI

ηIH = aIbH

ηII = aIbI: [2]

Because multiplication is transitive, we easily solve for the two-step human
efficiency in terms of the others:

ηHH = ηHIηIH=ηII: [3]

This equation can be recast as a statement about thresholds, using Eq. 1 to
substitute thresholds for efficiencies,

cHH = cHIcIH=cII: [4]

Both equations correspond to the same dashed line in Fig. 2, using the
threshold scale on the left (Eq. 4) or the efficiency scale on the right (Eq. 3).
In future work, it will be interesting to study the human combination effi-
ciency ηIH, for which we can solve Eq. 3,

ηIH = ηHHηII=ηHI: [5]

All of the terms on the right of Eq. 5 are easily accessible. ηH is easy to
measure, and our work here suggests that, in future studies, one might
assume that ηHH = ηH. The human efficiency of detecting ηHI seems to be
conserved across many conditions, so that it could be estimated once. And
the two-step efficiency ηII is easily computed by implementing the one- and
two-step ideals. In this way, Eq. 5 could make it easy to routinely estimate
the observer’s combining efficiency ηIH.

Eq. 3 may seem odd if you did not expect the ηII term there for two-step
efficiency; we can make it more intuitive by defining composite efficiency η�

relative to the composite ideal, II. Recall that standard efficiency is η = EI /E. We
now define composite efficiency η� = EII /E. In this new notation, Eq. 3 becomes

η�HH = η�HI η�IH: [6]

In words, for any observer whose efficiency is separable (Eq. 2), the overall
composite efficiency is the product of the composite efficiencies of the steps.
Eqs. 2–6 are all equivalent. Though the equation for η� (Eq. 6) is simpler and
more intuitive than the equation for η (Eq. 3), we chose to plot the tradi-
tional familiar efficiency η rather than our new-fangled composite efficiency
η� because they differ solely by the factor ηII, which is nearly 1.
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SI Materials and Methods
Composite II′: Ruling Out Stimulus Artifacts.As a check on our work,
we implemented composite II in two ways. First we created the
composite observer by cascading the two bionic crutches that had
already been programmed to work with the human, but now
without the human. The ideal detector passes an 18-bit feature
map, indicating which features were detected, to the ideal com-
biner. However, one reviewer noted that we create special stimuli,
high-contrast letters, to test the human in composite IH, and
perhaps some artifact in those stimuli is affecting our results. So
we also implemented an ideal to identify the stimuli presented
to the human in composite IH. This alternate implementation
of composite II is formally equivalent, and gave identical results,
assuring us that no stimulus artifact had intruded.

Composite HI′: Ruling Out Unwanted Human Combination Learning in
Composite HI. The whole point of the bionic observer with ideal
combination is to isolate the human detection step, so it is essential
to rule out combination learning by the human participant; we did
that in three ways: by shuffling the order of detection trials to
discourage pattern learning, by testing for it after training, and by
running a modified control experiment that makes such learning
impossible (i.e., a modified implementation of the bionic observer).
Distributing a letter’s 18 possible features over 18 detection

trials does not eliminate the letter’s pattern; it merely converts
a brief spatial pattern into a prolonged spatiotemporal pattern,
extended over 18 detection trials. In principle, the observer could
improve his detection performance by learning each letter’s pat-
tern, combining information across sequential presentations.
We discourage pattern learning by shuffling the order of the

18 detection trials that constitute each identification trial; in fact,
the order is irrelevant, so this does not rule out pattern learning,
but would likely hinder it. Furthermore, because shuffling makes
it hard to guess the location of the next feature presentation, it has
the incidental benefit of extending the relevant area to be attended
to include the whole letter, not just one feature. Thus, the human
participant is expected to attend to the whole letter area both
when he detects as part of the bionic observer and when he
identifies unaided.
At the end of training, we use a recognition test to discover any

unwanted combination learning. On each trial, the human par-
ticipant is shown two Gabor letters, one after the other, feature
by feature, and is asked to indicate which of the two was used in
training. As in training, on each trial, each letter’s features are
presented in random order. One of the letters is old, the other
new. The old letter is a random sample from the training alphabet,
an eight-letter subset of IndyEighteen. The new letter (the foil) is
a random sample from a specially constructed alphabet, also an
eight-letter subset of IndyEighteen, which has the same features as
the old alphabet, rearranged into different combinations. This new
alphabet is formed by shuffling the features of the eight old letters,
across letters, to create the eight letters of the new alphabet. The
two alphabets, old and new, have the same number of features of
each type (first-order statistics), but differ in how these features are
combined (higher-order statistics). Only if the observer has learned
these combinations will he be able to distinguish old from new. No
such learning was found: observers correctly indicated which letter
was old on 46% of trials, not significantly different from chance
(50%), or from performance measured before training, 52%.
To be absolutely sure of this key point, we also created a

modified implementation of the bionic observer that eliminates
the possibility of combination learning by the human detector.

Before, the 18 detection trials were all based on a single target
letter. In the new implementation, there is still a target to be
identified (by the ideal combiner), but each detection trial is based
on an independently selected letter from the eight-letter alphabet,
not necessarily the target. Each detection trial is conducted as a yes/
no test, but scored as right or wrong. If the human detector is right,
then the bionic combiner receives this feature correctly (i.e., present
or absent), as in the target. If the human detector is wrong, then the
combiner receives this feature wrongly (i.e., present if absent in the
target; absent if present in the target). For the human, this abolishes
the letter patterns (which are co-occurrences of features within
a letter) while preserving the frequency of each feature in the
alphabet as a whole; for the bionic combiner, this presents a feature
vector reflecting human accuracy in detecting each feature.
Despite the several differences in our two implementations

of detection, the outcome—separability—was the same for both
the original and the variant, which suggests that the detection step
is performed similarly, just as efficiently, in both cases. In the fu-
ture, it will usually be enough to test for recognition after training
to confirm that the pattern learning is negligible. If such a test
reveals that combination learning has occurred, this modified
implementation of the bionic observer with human detection and
ideal combination can be used to eradicate it.

Participants. Six human participants (JS, AK, DF, CH, SS, and
MC) performed unconstrained H. Four of them (DF, CH, SS, and
MC) also performed in composites HI′ and IH; the other two
performed in composite HI. JS is an author. The others were naive
to the purpose of the experiment. All participants gave informed
consent in writing. Testing of human observers was approved by
the NYU University Committee on Activities Involving Human
Subjects (UCAIHS).

Stimuli. Signals are IndyEighteen letters. Each letter is a gray
square with a combination of several Gabors oriented 45° from
vertical, placed at various locations on a 3 × 3 grid. The super-
imposed Gabors are orthogonal, and, despite forming a plaid, they
are detected and perceived independently (1, 2). The center-
to-center spacing of adjacent Gabors is 1.4× the wavelength,
1.4/f. A vertical Gabor pattern is

Lðx; yÞ ¼
�
1þ c  sinð2πfxÞexp

�
−
x2 þ y2

λ2

��
L0;

where background luminance L0 = 21 cd/m2, spatial frequency
f = 2 cycle/degree, spatial extent λ = 0.61 degree, and contrast c
is chosen using the estimate provided by QUEST.
Noise is added independently to each pixel of the stimulus, such

that the luminance of any particular pixel is the sum of the lumi-
nance assigned to that pixel by the signal and a random increment
or decrement in luminance sampled from a zero-mean Gaussian
distribution, truncated at ±2 SDs. The rms contrast of the noise
is 0.20. There are 25.4 pixels/degree, horizontally and vertically.
The power spectral density N is 10−4.21 deg2.

Presentation. Stimuli are rendered by an Apple Macintosh com-
puter running MATLAB in conjunction with the Psychophysics
Toolbox extension (3, 4). Stimuli are displayed on a cathode-ray
tube monitor, driving only the green gun to achieve 12-bit accu-
racy, at a background luminance of 21 candela/m2 (5). The display
resolution is set to 1,024 × 768 at 60 Hz, 29 pixels/cm. The viewing
distance is 50 cm.
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Procedure. Each threshold measurement is based on a run of 40
letter-identification trials. The identification trial is performed
by the human, either unconstrained or as dictated by the kind of
composite: two steps, one step, or none. Each correct identifi-
cation is rewarded with a short beep. The observer is asked to
fixate a central white dot subtending 0.10° on the monitor. The
observer initiates the run by clicking a mouse. When the human
acts alone or as a combiner, 1,000 ms later the stimulus appears
for 200 ms, followed by a blank screen for 250 ms, followed by a
noise-free response screen containing all of the letters. The ob-
server uses a mouse-controlled cursor to select a letter from the
response screen. Any response automatically initiates the next
trial, 1 s later. When the human acts as a detector, he performs 18
feature-detection trials for each letter-identification trial. On each
detection trial, he reports the presence or absence of the Gabor by
key press. There is no detection-specific feedback; the only feed-
back is the identification reward at the end of the identification
trial, i.e., after the 18th detection trial. The feedback indicates
whether the human and ideal together chose the correct letter.

QUEST. The QUEST sequential estimation procedure provides
threshold estimates over the course of learning (6). The QUEST
procedure estimates from already-known information regarding
both the task and observer (assumed stationary), as well as from
the observer’s performance throughout the run, to provide a
maximum posterior probability estimate of threshold contrast,
the signal contrast (ratio of luminance increment to background
luminance) at which the observer correctly identifies the signal
at criterion performance (75% correct). After each trial, the
QUEST procedure calculates a threshold estimate. We place each
new trial at the current threshold estimate. In practice, if the
observer correctly identifies the signal, the next trial presents a
lower contrast. If he incorrectly identifies the signal, the next trial
presents a higher contrast. QUEST is initialized at the beginning
of each run with log threshold estimate −1 ± 2 (±SD), β 3.5,
lapse rate 0.01, and guess rate 0.125, and is updated after each
identification trial.

Calculating the Slope of Learning. For each unconstrained or com-
posite observer, for each participant, we fit a line to the data (log
threshold contrast as a function of log trial) by linear least-squares
regression. Extrapolating any of these rising lines makes the im-
possible prediction that the human will eventually beat the ideal.
In fact, improvement must saturate eventually, after huge amounts
of practice. Even so, Pelli et al. (7) found good straight-line fits to
letter-learning data out to 50,000 trials. The ideal does not learn;
it is unaffected by practice, so we display best-fit horizontal lines
for I and II in Fig. 2.

SI Methods for Table 1
Here we provide the methods used to estimate the log-log slope of
learning from the 13 studies presented in Table 1, top to bottom.

This Study, Composite Observer HI. The slope, −0.03, is the average
across all participants and is reported in the main text.

Pelli et al. (8), Familiar Letters. Experiment 3.4 of Pelli et al. (ref. 8,
p. 4,658) measured improvement in threshold contrast for the
identification of a letter. Participant RA performed 2,000 trials
of the identification task using familiar letters. His efficiency
increased from 6% (at 40 trials) to 7.3% (at 2,000 trials). We fit
a straight line, in log coordinates, to these two points using linear
least-squares regression; its slope was 0.050. Because efficiency is
inversely proportional to threshold contrast squared, the log-log
slope of efficiency is −2× that of threshold contrast. Therefore,
the log-log slope of contrast learning is 0.050/−2 = −0.0250. Two
other participants, AW and DM, performed ∼2,500 trials (in
blocks of 40) of an identification task using 2 × 3 checkerboard

patterns. Figure 10 of ref. 1 (p. 4659) shows the data. The ver-
tical axis plots the efficiency estimated from each block. The data
are fit with a straight line on log-log axes. The slope of efficiency
learning is 0.076 for participant AW and 0.100 for participant
DM, and so the slope of contrast learning is −0.038 and −0.050,
respectively. Thus, the average log-log slope of contrast learning
across the three participants is −0.04.

Furmanski et al. (9). Furmanski et al. (ref. 9, figure 2a, p. 574) show
improvement in threshold contrast for the detection of a Gabor.
The learning curve is the average across six participants and shows
learning over the course of a month. The reported “normalized
threshold” is proportional to threshold and does not affect our
estimate of the slope. We fit a line, in log coordinates, to the 34
normalized thresholds reported in the figure; its slope is −0.06.

This Study, Composite Observer IH. The slope, −0.11, is the average
across all participants and is reported in the main text.

Suchow and Pelli (10). The figure in Result III shows improvement
in efficiency for the identification of an unfamiliar letter from the
Armenian alphabet. Two participants in Suchow and Pelli (10),
SAS and JWS, performed 3,000 trials of the identification task in
blocks of 40 trials. The vertical axis plots the efficiency estimated
from each block. The data are fit with a straight line on log-log
axes. The log-log slope of efficiency learning is 0.21 for participant
SAS and 0.21 for participant JWS. Thus, the average log-log slope
of contrast learning is −0.11.

Pelli et al. (8), Unfamiliar Letters. We used the same method de-
scribed above. Pelli et al. (ref. 8, figure 10, p. 4659) also reports
seven learning curves for participants identifying unfamiliar let-
ters. Each curve includes between 1,500 and 5,000 trials of an
identification task. Participants SE, JB, and AW identified 4 × 4
checkerboard patterns; participants DM and AW identified
Devanagari letters; participant AW identified Hebrew letters; par-
ticipant JF identified English letters. The average log-log slope of
contrast learning was −0.11.

Lu and Dosher (11). Lu and Dosher (ref. 11, figure 4a, p. 50) show
improvement in threshold contrast for the identification of the
orientation of a Gabor tilted±8° from diagonal. This task required
a fine discrimination, which was initially unfamiliar to the partic-
ipants. Participants were tested at each of two criteria (70.7% and
79.3% correct) at each of eight levels of added noise (rms contrast
ranging from 0 to 0.33). In the text, the authors report that at the
highest level of external noise, threshold contrast improved from
0.72 (for sessions 1 and 2 of 10, coded as session 1.5) to 0.48 (for
sessions 9 and 10, coded as session 9.5). We fit a line, in log co-
ordinates, to these two points; its slope was −0.22. The slope is the
same, −0.22, if the line is instead fit to the data from all sessions
at the highest noise level, not just the first and last two. Lower
noise levels produced more shallow slopes of learning. The aver-
age slope across all noise levels and criteria is −0.12 (ranging
from −0.014 to −0.24).

This Study, Observer H. The slope, −0.16, is the average across all
participants and is reported in the main text.

Gold et al. (12), Noise Texture. Gold et al. (ref. 12, figure 3, p. 177)
show improvement in efficiency for the identification of a noise
texture. For each of the two participants, AMC and JMG, we fit
a straight line, in log coordinates, to the points using linear least-
squares regression. The average log-log slope of contrast learning
was −0.32.

Gold et al. (12), Face. Gold et al. (ref. 12, figure 3, p. 177) show
improvement in efficiency for the identification of a face.
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For each of the two participants, AMC and CGB, we fit a
straight line, in log coordinates, to the points using linear least-
squares regression. The average log-log slope of contrast learn-
ing was −0.39.

Michel and Jacobs (13). Michel and Jacobs (ref. 13, figure 6, p. 9)
show improvement in efficiency for discrimination of shapes in
filtered noise. The authors defined efficiency as the ratio of the
sensitivity index d′ of human and ideal, which is similar, but not
identical, to our definition as the ratio of threshold energies. For
each of the three participants who showed evidence of learning
(BVR, WHS, and RAW), we fit a straight line, in log coor-
dinates, to the points using linear least-squares regression. The
average log-log slope of contrast learning was −0.48.

Fine and Jacobs (14). Fine and Jacobs (ref. 14, figure 6, p. 3217)
show improvement in threshold contrast for the discrimination
of a complex plaid pattern. The high spatial frequency compo-
nent of the plaid was placed at a different contrast than the low
spatial frequency component, and so for analysis we separately
measured the slope using the contrast of each component, and
then averaged the slopes together to produce the final estimate.
The across-participant average threshold contrast for sessions 1
and 2 (coded as session 1.5) was 0.081 and 0.27 for the low and
high spatial frequency components, respectively. After the final
sessions, 7 and 8 (coded at session 7.5), thresholds dropped to
0.024 and 0.078, respectively. We fit a straight line, in log co-
ordinates, to the points using linear least-squares regression. The
average log-log slope was −0.78.

1. Watson AB, Robson JG (1981) Discrimination at threshold: Labelled detectors in human
vision. Vision Res 21(7):1115–1122.

2. Kim J, Wilson HR (1993) Dependence of plaid motion coherence on component
grating directions. Vision Res 33(17):2479–2489.

3. Kim J, Wilson HR (1993) Dependence of plaid motion coherence on component grating
directions. Vision Res 33(17):2479–2489.

4. Brainard DH (1997) The Psychophysics Toolbox. Spat Vis 10(4):433–436.
5. Pelli DG, Zhang L (1991) Accurate control of contrast on microcomputer displays.

Vision Res 31(7-8):1337–1350.
6. Watson AB, Pelli DG (1983) QUEST: A Bayesian adaptive psychometric method. Percept

Psychophys 33(2):113–120.
7. Pelli DG, Burns CW, Farell B, Moore-Page DC (2006) Feature detection and letter

identification. Vision Res 46(28):4646–4674.
8. Pelli DG, Burns CW, Farell B, Moore-Page DC (2006) Feature detection and letter

identification. Vision Res 46(28):4646–4674.

9. Furmanski CS, Schluppeck D, Engel SA (2004) Learning strengthens the response of
primary visual cortex to simple patterns. Curr Biol 14(7):573–578.

10. Suchow JW, Pelli DG (2005) Learning to identify letters: Generalization in high-level
perceptual learning. J Vis 5(8):712, (abstr).

11. Lu ZL, Dosher BA (2004) Perceptual learning retunes the perceptual template in
foveal orientation identification. J Vis 4(1):44–56.

12. Gold J, Bennett PJ, Sekuler AB (1999) Signal but not noise changes with perceptual
learning. Nature 402(6758):176–178.

13. Michel MM, Jacobs RA (2008) Learning optimal integration of arbitrary features in
a perceptual discrimination task. J Vis 8(2):, 3.1–16.

14. Fine I, Jacobs RA (2000) Perceptual learning for a pattern discrimination task. Vision
Res 40(23):3209–3230.

Suchow and Pelli www.pnas.org/cgi/content/short/1218438110 3 of 4

www.pnas.org/cgi/content/short/1218438110


Fig. S1. Learning curves for all participants (as in Fig. 2). The log-log slope of contrast learning, averaged across participants, is 0 (I), 0.019 (II), −0.11 (IH), −0.027 (HI),
−0.16 (HH), and −0.16 (H). The threshold contrast at 1,000 trials, averaged across participants, is 0.010 (I), 0.015 (II), 0.026 (IH), 0.069 (HI), 0.13 (HH), and 0.12 (H).
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